《氩气等离子体射流特性:电压、气流、外磁场的综合影响*》 的补充材料

周雄峰 陈彬 刘坤节

(重庆大学电气工程学院, 输变电装备技术全国重点实验室, 重庆 400044)

S1 放电功率

放电功率计算公式为

$$P = \frac{1}{T} \int_{0}^{T} u(t)i(t)dt = \frac{C_{m}}{T} \int_{0}^{T} u(t) \frac{du_{c}}{dt} dt = \frac{C_{m}}{T} \int_{0}^{T} u(t) du_{c} = \frac{C_{m}}{T} \oint u(t) du_{c} = \frac{C_{m}S}{T},$$
 (S1)

其中P为放电功率,T为交流电周期,u(t)和i(t)为随时间t变化的瞬时放电电压和放电电流, C_m 为电容值, u_c 为电容两端电压值,S为放电电压u(t)和电容两端电压 u_c 所围成的封闭 Lissajour 图面积.

S2 电子密度

实验中发射光谱没有观测到 H 原子谱线, 因此采用 Ar 原子谱线计算电子密度. 对于类 H 原子的谱线, 一般可以用 Voigt 线性函数表示:

$$y = y_0 + A \frac{2\ln 2}{\pi^{1.5}} \frac{\Delta \lambda_L}{\Delta \lambda_G} \int_{-\infty}^{+\infty} \frac{\exp(-t^2)}{(\sqrt{\ln 2} \frac{\Delta \lambda_L}{\Delta \lambda_G})^2 + (2\sqrt{\ln 2} \frac{x - x_c}{\Delta \lambda_G})^2} dt,$$
 (S2)

式中 $\Delta \lambda_G$ 和 $\Delta \lambda_L$ 表示谱线中高斯线性和洛伦兹线性成份的展宽. 由于 Ar 原子谱线的线性不是标准的 Voigt 线性,因此需要将其谱线归一化后,然后从强度-波长的函数 $f(\lambda)$ 转化为强度-频率的函数 g(v). 其转换关系为

$$g(v) = \frac{c}{v^2} f(\lambda) = \frac{\lambda^2}{c} f(\lambda), \tag{S3}$$

式中v表示频率,c表示光速, λ 表示波长. 通过(S2)式—(S3)式计算得到的高斯展 $\mathbb{E}_{\Delta \lambda_G}$ 和洛伦兹展宽 $\Delta \lambda_L$ 包含以下展宽成分:

$$\Delta \lambda_{\rm G} = \sqrt{\Delta \lambda_{\rm D}^2 + \Delta \lambda_{\rm I}^2},\tag{S4}$$

$$\Delta \lambda_{L} = \Delta \lambda_{\text{van}} + \Delta \lambda_{\text{s}} + \Delta \lambda_{\text{R}}, \tag{S5}$$

其中 $\Delta \lambda_D$ 表示 Doppler 展宽, $\Delta \lambda_I$ 表示仪器展宽, $\Delta \lambda_{van}$ 表示 van der Waals 展宽, $\Delta \lambda_s$ 表示 Stark 展宽, $\Delta \lambda_R$ 表示共振展宽. 对于洛伦兹展宽 $\Delta \lambda_L$, 其成分中的共振展宽 $\Delta \lambda_R$ 在大气压下数值很小(约为 10^{-5} nm), 一般忽略不计, 另外两个展宽的表达式为

$$\Delta \lambda_{\text{van}} = \frac{\lambda^2}{c} 1.71 \times 10^{-3} (\frac{T_g}{296})^{-0.7}, \tag{S6}$$

$$\Delta \lambda_{\rm s} = 2 \times [1 + 1.75 \times 10^{-4} \times n_{\rm e}^{1/4} \alpha \times (1 - 0.068 n_{\rm e}^{1/6} T_{\rm e}^{-1/2})] \times 10^{-16} \omega n_{\rm e}, \tag{S7}$$

其中 n_e 表示电子密度, T_g 表示气体温度, α 表示碰撞参数, T_e 表示电子温度, ω 表示电子碰撞半高宽. 在大气压下,可以将 α , T_e , ω 视为定值,分别取0.032, 1 eV 和0.00537 nm/cm³. 因此,联合(S2)式—(S7)式,就可以计算得到等离子体电子密度.

S3 电子激发温度

氫气 APPJ 中能观测到丰富的 Ar(4p-4s)谱线,可以利用这些谱线通过玻尔兹 曼斜率法计算等离子体电子激发温度 T_{exc} ,其表达式为

$$\ln\left(\frac{I_{\text{pk}}\lambda_{\text{pk}}}{g_{\text{p}}A_{\text{pk}}}\right) = \ln\left(\frac{N_{\text{a}}hc}{Q_{\text{exc}}}\right) - \frac{E_{\text{p}}}{K_{\text{B}}T_{\text{exc}}}$$
(S8)

式中, I_{pk} 和 λ_{pk} 分别表示电子从原子高能态 p 向低能态 k 辐射跃迁时形成的谱线强度和波长, g_p 为高能态的统计权重, A_{pk} 为跃迁概率, N_a 表示原子总布居数, Q_{exc} 表示原子配分函数, E_p 表示高能态能量, h 是普朗克常数, K_B 是玻尔兹曼常数. 实验中选取的计算电子激发温度 T_{exc} 的 Ar(4p-4s)谱线所对应的波长分别为: 738.40 nm, 751.47 nm, 794.82 nm, 800.62 nm, 其相关的谱线参数在表 S1 中给出.

表 S1 计算电子激发温度的 Ar(4p-4s)谱线相关参数

$\lambda_{\mathbf{pk}}/\mathrm{nm}$	$g_{ m p}$	$A_{ m pk}/{ m s}^{-1}$	$E_{\mathbf{p}}/\mathrm{eV}$
738.40	5	8.5×10^{6}	13.30
751.47	1	4.0×10^7	13.27
794.82	3	1.86×10^7	13.28
800.62	5	4.9×10^{6}	13.17

Table S1. Constants of Ar(4p-4s) for calculating electron excitation temperature.

S4 气体温度

在大气压氩气放电等离子体中,由于与氛围 Ar 粒子的碰撞淬灭反应速率较小,OH(A)粒子的有效寿命较长,大于其转动能量弛豫时间,在退激发之前能基态粒子进行充分的能量交换达到热平衡状态. 因此,可以用 OH(A)的转动温度 T_{rot} 来表示等离子体气体温度 T_{g} . 利用 OH(A-X)的谱线,可以通过玻尔兹曼斜率法计算 OH(A)的转动温度 T_{rot} (即气体温度 T_{g}),其具体表达式为

$$\ln\left[\frac{I_{NN''}\lambda_{NN''}}{(2N'+1)A_{NN''}}\right] = \ln\left(\frac{N_bhc}{Q_{\text{rot}}}\right) - \frac{F(N')hc}{k_BT_g},$$
(S9)

其中 $I_{N'N'}$ 和 $\lambda_{N'N'}$ 分别表示电子由某电子态上的一转动能级 N'(上能级)向另一电子态的一转动能级 N''(下能级) 跃迁时形成的谱线强度和波长, $A_{N'N''}$ 为跃迁概率, N_o

表示上能级所处振动态上的粒子布居数, F(N')表示上能级的转动项能量, Q_{rot} 是转动配分函数. 实验中选取的计算气体温度 T_g 的 OH(A-X)的谱线所对应的波长分别为: 308.00 nm, 308.33 nm, 308.52 nm, 308.73 nm, 310.32 nm, 其相关的谱线参数在表 S2 中给出.

表 S2 计算气体温度的 OH(A-X)谱线相关参数 Table S2. Constants of OH(A-X) for calculating gas temperature.

$\lambda_{N'N''}$ /nm	N'	$A_{N'N''}/s^{-1}$	F(N')/cm ⁻¹
308.00	2	5.16×10 ⁵	101.77
308.33	4	6.04×10^{5}	339.22
308.52	5	6.24×10^5	508.83
308.73	6	6.35×10^{5}	712.36
310.32	3	3.82×10^{5}	203.53

S5 基态 OH 粒子数

实验中利用基态·OH 粒子对 309 nm 附近处紫外光的吸收特性进行吸收光谱原位测量,可以得到吸光度,其具体计算公式如下:

$$A(\lambda) = (I_{\rm L} + I_{\rm P} - I_{\rm L+P})/I_{\rm L},$$
 (S10)

其中 $A(\lambda)$ 表示在波长 λ 处的吸光度, I_{L} 表示打开紫外光源、关闭放电时的信号, I_{P} 表示启动放电、关闭紫外光源时的信号, I_{L+P} 表示打开紫外光源、启动放电时的信号, 根据朗伯-比尔定律有如下关系:

$$A(\lambda) = 1 - \exp[-h\lambda B\varphi(\lambda)n_{J}L], \tag{S11}$$

其中 B 是吸收常数, n_J 是在波长 λ 处对应的特定转动能级 J 上的基态·OH 粒子数密度, L 是吸收光程, $\varphi(\lambda)$ 是归一化线性函数, 由 Doppler 展宽和 van der Waals 展宽构成. Doppler 展宽 $\Delta\lambda_D$ 由如下公式计算:

$$\Delta \lambda_{\rm D} = 7.16 \times 10^{-7} \lambda \sqrt{\frac{T_{\rm g}}{M}} , \qquad (S12)$$

其中 M 表示·OH 的相对原子质量, van der Waals 展宽 $\Delta \lambda_{\text{van}}$ 计算表达式见(S6)式. 对于特定能级 J 上的基态·OH 粒子数密度 n_J 与总粒子数密度 n_{tot} , 有如下关系:

$$n_J = f_J n_{\text{tot}}, \tag{S13}$$

其中 f₂是玻尔兹曼因子, 表达形式为

$$f_J = \frac{2(2J+1)}{Q_{\text{rot}}} \exp(-\frac{E_J}{K_B T_g}),$$
 (S14)

其中 E_J 是能级J的能量. 这样,可以选取OH(A-X)的一支谱线(本研究选取 $P_1(2)$),然后联合以上各公式,就可以根据吸光度计算得到基态·OH 粒子数密度.