补充材料

球形双曲色散超材料腔的多重窄带回音廊模式 及透明显示应用*

李艳[†] 任思萌 褚博 燕汝江 于群星 孙辉 邵立 钟发成^{*} (郑州航空工业管理学院材料学院,郑州 450046)

我们减少最外层介质层,对 7 层银/介质交替组成的球形双曲色散超构材料 (HMM) 腔进行研究,这里我们设银层厚度为 *d*=5nm,介质层厚度为 *s*=4nm, 从内到外介质层折射率分别为 *n*1=1.8, *n*2=1.45, *n*3=1.45,结构的散射效率谱, 如图 S1 (a) 所示。发现这里的 7 层银/介质交替组成的 HMM 腔和正文图 1 中 8 层银/介质交替组成的 HMM 腔都只有偶极电分量在所示波段起主要贡献,准静 态近似成立。通过 8 层银/介质交替组成的 HMM 腔和 7 层银/介质交替组成的 HMM 腔进行对比,发现 HMM 腔所激发的电共振(TM_{n,m})个数仅与金属层的数目 相关。因此,当考虑到彩色透明显示的应用(构建红绿蓝波段的三重窄带共振), 可以将 HMM 腔简化到三层银和两层介质层,即可激发出三个窄带的回音廊模式。

可以清楚地看到,随着第一介质层折射率(n1)的增大,如图 S2(a)所示,TM1,1 的共振位置几乎不发生变化,TM1,2、TM1,3 均发生红移。且 TM1,2 模式强度减 弱,TM1,1 模式强度逐渐增强。随着第二介质层折射率(n2)的增大,如图 S2(b)所示, TM1,2 共振位置几乎不发生变化,TM1,1 向更长波长移动,且模式强度逐渐减弱, TM1,3 模式强度逐渐增强。

在图 S3(a)中进一步固定 n2=1.45 时,可以清楚地看到第一层介质折射率 n1 对 TM1,1, TM1,2,, TM1,3 三个模式的影响。当 n1>1.4 时, TM1,3 共振才会出现在

可见光波段,且TM_{1,1},TM_{1,2},TM_{1,3}均随着 n₁的增大,发生红移。但当 n₁>2.2 时TM_{1,3}共振强度明显变弱;在图 S3(b)中可以清楚地看到当第二层介质折射率 n₂增大时,TM_{1,2},TM_{1,3}模式红移不明显,但TM_{1,1}模式发生剧烈的红移。当 n₂>1.8 时TM_{1,1}模式红移到可见光波段以外,且共振强度明显变弱。在图 S3(c)中可以 清楚地看到当第一层银壳层厚度 d₁增大时,TM_{1,1},TM_{1,3}均随着 d₁的增大,发 生红移,TM_{1,2}模式先红移再蓝移,且共振强度减弱。在图 S3(d)中可以清楚地看 到当第一层介电层厚度 s₁增大时,TM_{1,1},TM_{1,2}均随着 s₁的增大,发生红移, 当 s₁>2 时,TM_{1,3}共振才会出现在可见光波段,且共振强度逐渐增强。

图 S1 (a) 7 层银(d=5nm)/介质层(s=4 nm, $n_1=1.8$, $n_2=1.45$, $n_3=1.45$)交替包裹组成的球形 HMM 腔的散射谱,黑线代表偶极电贡献 (a_1),红线代表四极电贡献 (a_2)。为了更清楚地显示电四 极子的贡献,将其散射效率值扩大了 50 倍; (b)结构在 TM_{1,1}模式共振波长 $\lambda\approx1268$ nm 处的 电场强度分布图;(c) HMM 腔在 TM_{1,2}模式共振波长 $\lambda\approx769$ nm 处的电场强度分布图;(d) HMM 腔在 TM_{2,1}模式共振波长 $\lambda\approx792$ nm 处的电场强度分布图;(e) HMM 腔在 TM_{2,2}模式共振波长 $\lambda\approx534$ nm 处的电场强度分布图。

图 S2 (a)球形双曲色散腔在改变介质层折射率 n₁=1.5-1.9 时的散射效率谱; (b)球形双曲色散腔在改变介质层折射率 n₂=1.3-1.7 时的散射效率谱。

图 S3 HMM 腔中 *R_{in}*=5nm, *s*₂=9nm, 和 *d*₂=8nm 固定情况下, (a)进一步固定 *s*₁=4nm, *d*₁=5nm, *n*₂=1. 45,介质折射率 *n*₁从 1.0 到 3.0 变化时,HMM 腔的散射效率变化谱;(b)进一步固定 *s*₁=4nm, *d*₁=5nm, *n*₁=1.8,当介质折射率 *n*₂从 1.0 到 3.0 变化时,HMM 腔的散射效率变化 谱;(c)进一步固定 *n*₁=1.8, *n*₂=1. 45, *s*₁=4nm,银壳层厚度 *d*₁从 0 nm 到 10 nm 变化时,HMM 腔的散射效率变化谱;(d)进一步固 *n*₁=1.8, *n*₂=1. 45, *d*₁=5nm,介质层厚度 *s*₁从 0nm 到 10nm 变化时 HMM 腔的散射效率变化谱。