Lithium-ion batteries (LIBs) are widely used in portable electronic devices, electric vehicles, and other fields. With the rapid development of its application fields, there is an urgent need to further improve its energy density and safety. During the charging/discharging process of the LIBs, the diffusion of Li will cause local volumetric change in the electrode material. The degradation and damage of the electrode material structure caused by diffusion-induced deformation is a major obstacle to the development of LIBs. Generally speaking, the electrode materials in LIBs are always subject to specific external constraints, including both inevitable passive structural constraints within the battery and external active constraints that may be imposed by emerging technology application scenarios, which can also affect the mechanical properties of the electrode materials. Therefore, a deeper understanding of the diffusion-induced stress and Li concentration changes in the electrode material is an engineering requirement for developing new material design paradigms to enhance the overall performance of LIBs. In this work, a two-way diffusion-stress coupling model is used to discuss the effect of the four different levels of idealized deformation constraints on the Li concentration and stress in the bilayer plate electrode during the charging process through the numerical solution. From a mechanical perspective, the bilayer plate electrode structure has two degrees of freedom: lateral expansion and bending deformation. Weakened constraint conditions can partially or completely activate these stress release mechanisms, thereby reducing the overall stress level of the electrode structure and improving its mechanical stability. However, from an electrochemical perspective, the stress gradient generated by the forward bending deformation of the electrode structure can hinder the Li intercalation process. Enhanced constraints can partially or completely suppress the forward bending of the electrode, making the Li concentration in the active layer more uniform and thus improving the capacity utilization efficiency of the active layer. These results not only provide theoretical references for further understanding the chemical-mechanical response of the bilayer electrodes under more realistic or extreme service conditions, but also indicate from a design perspective that compromised external constraints are beneficial for balancing the structural durability and electrochemical performance of electrodes.