\begin{document}$\text{H}_2^+$\end{document} and \begin{document}$\text{HD}^+$\end{document} in recent years, including the establishment of the \begin{document}$m\alpha^7\ln(\alpha)$\end{document} order correction. For the hyperfine structure of \begin{document}$\text{H}_2^+$\end{document}, theoretical calculations show good agreement with experimental measurements after decades of work. However, for HD+, discrepancies have been observed between measurements and theoretical predictions that cannot be accounted for by the theoretical uncertainty in the non-logarithmic term of the \begin{document}$m\alpha^7$\end{document} order correction. To address this issue, additional experimental measurements are needed for mutual validation, as well as independent tests of the theory, particularly regarding the non-logarithmic term of the \begin{document}$m\alpha^7$\end{document} order correction."> - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

Zhong Zhen-Xiang
cstr: 32037.14.aps.73.20241101
PDF
HTML
Get Citation
  • The study of high-precision spectroscopy for hydrogen molecular ions enables the determination of fundamental constants, such as the proton-to-electron mass ratio, the deuteron-to-electron mass ratio, the Rydberg constant, and the charge radii of proton and deuteron. This can be accomplished through a combination of high precision experimental measurements and theoretical calculations. The spectroscopy of hydrogen molecular ions reveals abundant hyperfine splittings, necessitating not only an understanding of rovibrational transition frequencies but also a thorough grasp of hyperfine structure theory to extract meaningful physical information from the spectra. This article reviews the history of experiments and theories related to the spectroscopy of hydrogen molecular ions, with a particular focus on the theory of hyperfine structure. As far back as the second half of the last century, the hyperfine structure of hydrogen molecular ions was described by a comprehensive theory based on its leading-order term, known as the Breit-Pauli Hamiltonian. Thanks to the advancements in non-relativistic quantum electrodynamics (NRQED) at the beginning of this century, a systematic development of next-to-leading-order theory for hyperfine structure has been achieved and applied to $\text{H}_2^+$ and $\text{HD}^+$ in recent years, including the establishment of the $m\alpha^7\ln(\alpha)$ order correction. For the hyperfine structure of $\text{H}_2^+$, theoretical calculations show good agreement with experimental measurements after decades of work. However, for HD +, discrepancies have been observed between measurements and theoretical predictions that cannot be accounted for by the theoretical uncertainty in the non-logarithmic term of the $m\alpha^7$ order correction. To address this issue, additional experimental measurements are needed for mutual validation, as well as independent tests of the theory, particularly regarding the non-logarithmic term of the $m\alpha^7$ order correction.
        Corresponding author:Zhong Zhen-Xiang,zxzhong@hainanu.edu.cn
      • Funds:Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 12393821) and the National Key Research and Development Program of China (Grant No. 2021YFA1402103).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

    • 年份 作者(研究机构) 跃迁$ (v, L)\rightarrow (v', L') $ 所测频率/MHz 理论频率/MHz 质量比
      HD+
      2007 Koelemeij
      et al. (HHU)[16]
      $ (0, 2)\rightarrow (4, 3) $ 214978560.6(0.5) 214978560.88(7)[62]
      2016 Biesheuvel
      et al. (VU)[18]
      $ (0, 2)\rightarrow (8, 3) $ 383407177.38(41) 383407177.150(15)[20] 1836.1526695(53)
      2018 Alighanbari
      et al. (HHU)[63]
      $ (0, 0)_{J=2}\rightarrow (0, 1)_{J'=3} $ 1314935.8280(4)(3)a 1314935.8273(10)b 1836.1526739(24)
      2020 Alighanbari
      et al. (HHU)[23]
      $ (0, 0)\rightarrow (0, 1) $ 1314925.752910(17) 1314925.752896(18)(61)b,c 1836.152673449(24)
      (25)(13)d
      2020 Patra
      et al. (VU)[24]
      $ (4, 2)\rightarrow (9, 3) $ 415264925.5005(12) 415264925.4962(74)b 1836.152673406(38)
      2021 Kortunov
      et al. (HHU)[64]
      $ (0, 0)\rightarrow (1, 1) $ 58605052.16424(16)(85)e 58605052.1639(5)(13)b,c 1836.152673384(11)
      (31)(55)(12)f
      2023 Alighanbari
      et al. (HHU)[17]
      $ (0, 0)\rightarrow (5, 1) $ 259762971.0512(6)
      (0.00004)e
      259762971.05091[41] 1836.152673463
      (10)(35)(1)(6)f
      $ \text{H}_2^+ $
      2024 Schenkel
      et al. (HHU)[65]
      $ (1, 0)\rightarrow (3, 2) $ 124487032.7(1.5) 124487032.45(6)[40] 1836.152665(53)
      CODATA推荐值
      2014 CODATA group[66] CODATA 2014 1836.15267389(17)
      2018 CODATA group[22] CODATA 2018 1836.15267343(11)
      2022 CODATA groupg CODATA 2022 1836.152673426(32)
      注:a第一个误差为统计误差, 第二个为系统误差;b来自Korobov, 是该实验文章的共同作者;c第一个误差来自理论, 第二个来自CODATAk 2018基本物理常数;d第一个误差来自实验, 第二个来自理论, 第三个来自CODATAk 2018基本物理常数;e第一个误差来自实验, 第二个来自超精细结构理论;f第一个误差来自实验, 第二个来自QED理论, 第三个来自超精细结构理论, 第四个来自CODATA 2018基本物理常数;g来自NIST的基本物理常数表 https://physics.nist.gov/cuu/Constants/index.html .
      DownLoad: CSV

      年份 振转跃迁 $ \mathcal{R} $ 相对误差 引文
      2020 $ (0, 0)\rightarrow (0, 1) $ 1223.899228658(23) $ 1.9\times10^{-11} $ HHU[23]
      2020 $ (0, 3)\rightarrow (9, 3) $ 1223.899228735(28) $ 2.3\times10^{-11} $ VU[67]
      2021 $ (0, 0)\rightarrow (0, 1) $ 1223.899228711(22) $ 1.8\times10^{-11} $ HHU[64]
      2023 $ (0, 0)\rightarrow (5, 1) $ 1223.899228720(25) $ 2.0\times10^{-11} $ HHU[17]
      1223.899228642(37) $ 3.0\times10^{-11} $ 潘宁阱[25,26,68]
      1223.899228723(56) $ 4.8\times10^{-11} $ CODATA 2018[22]
      DownLoad: CSV

      L v bF ce cI d1 d2
      1 0 922 930.1(9)a 42 417.32(15)b –41.673d 8566.174(17)b –19.837d
      922 940(20)[53] 42 348(29)[53] –3(15)[53] 8550.6(1.7)[53]
      923.16(21)[54]
      1 4 836 728.7(8)a 32 655.32(11)b –35.826c 6537.386(13)b –16.414c
      836 729.2(8)[52] 32 636[52] –34(1.5)e 6535.6[52]
      1 5 819 226.7(8)a 30 437.80(11)b –34.148c 6080.400(12)b –15.531c
      819 227.3(8)[52] 30 421[52] –33(1.5)e 6078.7[52]
      1 6 803 174.5(7)a 28 280.95(10)b –32.385c 5637.627(11)b –14.633c
      803 175.1(8)[52] 28 266[52] –31(1.5)e 5636.0[52]
      1 7 788 507.5(7)a
      788 507.9(8)[52] 26 156[52] –29(1.5)e 5204.9[52]
      1 8 775 171.2(7)a
      775 172.0(8)[52] 24 080[52] –27(1.5)e 4782.2[52]
      注:a包含高阶修正的贡献, 来自文献[49];b包含高阶修正的贡献, 来自文献[59];c仅计算领头项$ m\alpha^4 $阶的Breit-Pauli哈密顿量的贡献, 误差为相应值乘以$ \alpha^2\approx5.3\times10^{-5} $, 来自文献[51];d仅计算领头项$ m\alpha^4 $阶的Breit-Pauli哈密顿量的贡献, 误差为相应值乘以$ \alpha^2\approx5.3\times10^{-5} $, 来自文献[30];e由Babb于1995年重新拟合实验数据获得, 来自文献[46].
      DownLoad: CSV

      L se I F J n
      0 1/2 0 1/2 1/2 1
      1 1/2 1 1/2 1/2, 3/2 5
      3/2 1/2, 3/2, 5/2
      1/2 0 1/2 $ L-1/2, L+1/2 $ 2
      1/2 1 1/2 $ L-1/2, L+1/2 $ 6
      3/2 $ L-3/2, L-1/2, L+1/2, L+3/2 $
      DownLoad: CSV

      v $ \left(\dfrac{3}{2}, \dfrac{3}{2}\right)—\left(\dfrac{3}{2}, \dfrac{5}{2}\right) $ $ \left(\dfrac{3}{2}, \dfrac{3}{2}\right)—\left(\dfrac{3}{2}, \dfrac{1}{2}\right) $ $ \left(\dfrac{1}{2}, \dfrac{3}{2}\right)—\left(\dfrac{1}{2}, \dfrac{1}{2}\right) $ $ \left(\dfrac{3}{2}, \dfrac{5}{2}\right)—\left(\dfrac{1}{2}, \dfrac{3}{2}\right) $ $ \left(\dfrac{3}{2}, \dfrac{3}{2}\right)—\left(\dfrac{1}{2}, \dfrac{3}{2}\right) $
      4 5.7202 74.0249 15.371316(56)a 1270.5504 1276.2706
      5.721 74.027 15.371407(2)b 1270.550 1276.271
      5 5.2576 68.9314 14.381453(52)a 1243.2508 1248.5084
      5.258 68.933 14.381513(2)b 1243.251 1248.509
      6 4.8168 63.9879 13.413397(48)a 1218.1538 1222.9706
      4.817 63.989 13.413460(2)b 1218.154 1222.971
      7 4.3948 59.1626 12.4607 1195.1558 1199.5506
      4.395 59.164 12.461 1195.156 1199.551
      8 3.9892 54.4238 11.5172 1174.1683 1178.1576
      3.989 54.425 11.517 1174.169 1178.159
      注:a来自引文[59]的理论值;b来自引文[94]的实验值.
      DownLoad: CSV

      (v,L) (0, 0) (0, 1) (1, 1) (6, 1) (0, 3) (9, 3)
      E1[50] 31985.41(12) 30280.74(11) 22643.89(8) 31628.10(11) 18270.85(6)
      31984.9(1)
      E2[47] –31.345(8) –30.463(8) –25.356(7) –30.832(8) –21.304(6)
      E3[47] –4.809(1) –4.664(1) –3.850(1)a –4.733(1) –3.225(1)
      E4[49] 925394.2(9) 924567.7(9) 903366.5(8) 816716.1(8) 920480.0(9) 775706.1(7)
      E5[49] 142287.56(8) 142160.67(8) 138910.27(8) 125655.51(7) 141533.07(8) 119431.93(7)
      E6[50] 8611.299(18) 8136.859(17) 6027.925(13) 948.5421(20) 538.9991(12)
      8611.17(5)
      E7[50] 1321.7960(28) 1248.9624(27) 925.2072(20) 145.5969(3) 82.7250(2)
      1321.72(4)
      E8[47] –3.057(1) –2.945(1) –2.369(1)a –0.335 –0.219
      E9[50] 5.660(1) 5.653(1) 5.204(1)a 0.612 0.501
      注:a未见于文献中, 由本文作者计算.
      DownLoad: CSV

      L F S J
      L 0 1 $ L-1, L, L+1 $
      1 0 L
      1 $ L-1, L, L+1 $
      2 $ L-2, L-1, L, L+1, L+2 $
      DownLoad: CSV

      i $ FSJ\rightarrow F'S'J' $ j $ FSJ\rightarrow F'S'J' $ $ f_{ij}^\text{exp} $ $ f_{ij}^\text{theor} $[50] $ \varDelta_{ij} $ $ \varDelta_{ij}/\sigma_c $
      $ (v=0, L=0)\longrightarrow(v'=0, L'=1) $ $ f_{ij}^\text{exp} $来自引文[23]
      12 122→121 14 100→101 2434.211(75) 2434.465(23) –0.254 –3.2
      12 122→121 16 011→012 31074.752(43) 31074.102(56) –0.350 –4.9
      12 122→121 19 122→123 43283.419(54) 43284.10(12) –0.677 –5.0
      12 122→121 20 122→122 44944.338(72) 44945.289(64) –0.951 –9.8
      12 122→121 21 111→112 44996.486(61) 44997.14(11) –0.652 –5.3
      14 100→101 16 011→012 6939.541(66) 6939.636(42) –0.095 –1.2
      14 100→101 19 122→123 1949.208(47) 1948.63(11) –0.423 –3.2
      14 100→101 20 122→122 20810.127(88) 20810.823(63) –0.696 –6.5
      14 100→101 21 111→112 20862.275(79) 20862.673(91) –0.398 –3.3
      16 011→012 19 122→123 12209.667(41) 12209.994(72) –0.327 –4.0
      16 011→012 20 122→122 13870.586(62) 13871.187(42) –0.601 –7.9
      16 011→012 21 111→112 13922.734(49) 13923.037(51) –0.303 –4.3
      19 122→123 20 122→122 1660.919(70) 1661.19(10) –0.274 –2.2
      19 122→123 21 111→112 1713.067(59) 1713.042(25) 0.025 0.4
      20 122→122 21 111→112 52.148(6) 51.850(75) 0.298 2.8
      $ (v=0, L=0)\longrightarrow(v'=1, L'=1) $ $ f_{ij}^\text{exp} $来自引文[64]
      12 122→121 16 122→123 41294.06(32) 41293.66(12) 0.40 1.2
      $ (v=0, L30)\longrightarrow(v'=9, L'=3) $ $ f_{ij}^\text{exp} $来自引文[24]
      $ F=0 $ 014→014 $ F=1 $ 125→125 178254.4(9) 178245.89(28) 8.5 9.0
      DownLoad: CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

    • [1] Liu Xin, Wen Wei-Qiang, Li Ji-Guang, Wei Bao-Ren, Xiao Jun.Experimental and theoretical research progress of2P1/22P3/2transitions of highly charged boron-like ions. Acta Physica Sinica, 2024, 73(20): 203102.doi:10.7498/aps.73.20241190
      [2] Wang Jing-Zhe, Dong Fu-Long, Liu Jie.Dissociation dynamic study of $\text{H}_2^+$ in time-delayed two-color femtosecond lasers. Acta Physica Sinica, 2024, 73(24): 1-9.doi:10.7498/aps.73.20241283
      [3] Ji Chen.Nuclear structure effects to atomic Lamb shift and hyperfine splitting. Acta Physica Sinica, 2024, 73(20): 202101.doi:10.7498/aps.73.20241063
      [4] Wang Xia, Jia Fang-Shi, Yao Ke, Yan Jun, Li Ji-Guang, Wu Yong, Wang Jian-Guo.Hyperfine interaction constants and Landégfactors of clock states of Al-like ions. Acta Physica Sinica, 2023, 72(22): 223101.doi:10.7498/aps.72.20230940
      [5] Chen Run, Shao Xu-Ping, Huang Yun-Xia, Yang Xiao-Hua.Simulation of hyperfine-rotational spectrum of electromagnetic dipole transition rotation of BrF molecules. Acta Physica Sinica, 2023, 72(4): 043301.doi:10.7498/aps.72.20221957
      [6] Tang Jia-Dong, Liu Qian-Hao, Cheng Cun-Feng, Hu Shui-Ming.Hyperfine structure of ro-vibrational transition of HD in magnetic field. Acta Physica Sinica, 2021, 70(17): 170301.doi:10.7498/aps.70.20210512
      [7] Zhang Xiang, Lu Ben-Quan, Li Ji-Guang, Zou Hong-Xin.Theoretical investigation on hyperfine structure and isotope shift for 5d106s2S1/2→5d96s2 2D5/2clock transition in Hg+. Acta Physica Sinica, 2019, 68(4): 043101.doi:10.7498/aps.68.20182136
      [8] Pei Dong-Liang, He Jun, Wang Jie-Ying, Wang Jia-Chao, Wang Jun-Min.Measurement of the fine structure of cesium Rydberg state. Acta Physica Sinica, 2017, 66(19): 193701.doi:10.7498/aps.66.193701
      [9] Ren Ya-Na, Yang Bao-Dong, Wang Jie, Yang Guang, Wang Jun-Min.Measurement of the magnetic dipole hyperfine constant Ahfs of cesium 7S1/2 state. Acta Physica Sinica, 2016, 65(7): 073103.doi:10.7498/aps.65.073103
      [10] Yu Zu-Qing, Yang Wei-Ji, He Feng.Internuclear-distance-dependent ionization of H2+ in strong laser field in a classical perspective. Acta Physica Sinica, 2016, 65(20): 204202.doi:10.7498/aps.65.204202
      [11] Yao Hong-Bin, Zhang Ji, Peng Min, Li Wen-Liang.Theoretical study of the dissociation of H2+ and the quantum control of dynamic process by an intense laser field. Acta Physica Sinica, 2014, 63(19): 198202.doi:10.7498/aps.63.198202
      [12] Jiang Hong-Liang, Zhang Rong-Jun, Zhou Hong-Ming, Yao Duan-Zheng, Xiong Gui-Guang.Parametric properties of the electron spin relaxation due to spin-orbit interaction in InAs quantum dots. Acta Physica Sinica, 2011, 60(1): 017204.doi:10.7498/aps.60.017204
      [13] Yang Bao-Dong, Gao Jing, Wang Jie, Zhang Tian-Cai, Wang Jun-Min.Multiple electromagnetically-induced transparency of hyperfine levels in cesium 6S1/2 -6P3/2 -8S1/2 ladder-type system. Acta Physica Sinica, 2011, 60(11): 114207.doi:10.7498/aps.60.114207
      [14] Hou Bi-Hui, Li Yong, Liu Guo-Qing, Zhang Gui-Hua, Liu Feng-Yan, Tao Shi-Quan.ESR study of the Mn2+ center in LiNbO3. Acta Physica Sinica, 2005, 54(1): 373-378.doi:10.7498/aps.54.373
      [15] Chen Sui-Yuan, Liu Chang-Sheng, Li Hui-Li, Cui Tong.Hyperfine stucture during nanocrystallization of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy irradiated by laser. Acta Physica Sinica, 2005, 54(9): 4157-4163.doi:10.7498/aps.54.4157
      [16] Wang Li-Jun, Yu Hui-Ying.The coherent excitation property of a two-level atom w itha hyperfine structure in narrow band laser field. Acta Physica Sinica, 2004, 53(12): 4151-4156.doi:10.7498/aps.53.4151
      [17] Ma Hong-Liang, Lu Jiang, Wang Chun-Tao.Measurement of hyperfine structure spectrum in 56908 nm line of 141Pr+. Acta Physica Sinica, 2003, 52(3): 566-569.doi:10.7498/aps.52.566
      [18] Zhao Lu-Ming, Wang Li-Jun.. Acta Physica Sinica, 2002, 51(6): 1227-1232.doi:10.7498/aps.51.1227
      [19] LI GUANG-WU, MA HONG-LIANG, LI MAO-SHENG, CHEN ZHI-JUN, CHEN MIAO-HUA, LU FU-QUAN, PENG XIAN-JUE, YANG FU-JIA.HYPERFINE STRUCTURE MEASUREMENT IN LaⅡ5d2 1G4 →4f5d 1F3. Acta Physica Sinica, 2000, 49(7): 1256-1259.doi:10.7498/aps.49.1256
      [20] CHEN ZHI-JUN, MA HONG-LIANG, CHEN MIAO-HUA, LI MAO-SHENG, SHI WEI, LU FU-QUAN, TANG JIA-YONG.THE HYPERFINE STRUCTURE OF BaⅡ. Acta Physica Sinica, 1999, 48(11): 2038-2041.doi:10.7498/aps.48.2038
    Metrics
    • Abstract views:1180
    • PDF Downloads:55
    • Cited By:0
    Publishing process
    • Received Date:06 August 2024
    • Accepted Date:27 August 2024
    • Available Online:26 September 2024
    • Published Online:20 October 2024

      返回文章
      返回
        Baidu
        map