Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

Citation:

Gong Yi-Chun, Ming Jian-Yu, Wu Si-Qi, Yi Ming-Dong, Xie Ling-Hai, Huang Wei, Ling Hai-Feng
cstr: 32037.14.aps.73.20241022
PDF
HTML
Get Citation
  • Memristors stand out as the most promising candidates for non-volatile memory and neuromorphic computing due to their unique properties. A crucial strategy for optimizing memristor performance lies in voltage modulation, which is essential for achieving ultra-low power consumption in the nanowatt range and ultra-low energy operation below the femtojoule level. This capability is pivotal in overcoming the power consumption barrier and addressing the computational bottlenecks anticipated in the post-Moore era. However, for brain-inspired computing architectures utilizing high-density integrated memristor arrays, key device stability parameters must be considered, including the on/off ratio, high-speed response, retention time, and durability. Achieving efficient and stable ion/electron transport under low electric fields to develop low-voltage, high-performance memristors operating below 1 V is critical for advancing energy-efficient neuromorphic computing systems. This review provides a comprehensive overview of recent advancements in low-voltage memristors for neuromorphic computing. Firstly, it elucidates the mechanisms that control the operation of low-voltage memristor, such as electrochemical metallization and anion migration. These mechanisms play a pivotal role in determining the overall performance and reliability of memristors under low-voltage conditions. Secondly, the review then systematically examines the advantages of various material systems employed in low-voltage memristors, including transition metal oxides, two-dimensional materials, and organic materials. Each material system has distinct benefits, such as low ion activation energy, and appropriate defect density, which are critical for optimizing memristor performance at low operating voltages. Thirdly, the review consolidates the strategies for implementing low-voltage memristors through advanced materials engineering, doping engineering, and interface engineering. Moreover, the potential applications of low-voltage memristors in neuromorphic function simulation and neuromorphic computing are discussed. Finally, the current problems of low-voltage memristors are discussed, especially the stability issues and limited application scenarios. Future research directions are proposed, focusing on exploring new material systems and physical mechanisms that could be integrated into device design to achieve higher-performance low-voltage memristors.
      Corresponding author: Ling Hai-Feng, iamhfling@njupt.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA0717900), the National Natural Science Foundation of China (Grant Nos. 62288102, 22275098, 62471251), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. 46030CX21252).
    [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

    [59]

    [60]

    [61]

    [62]

    [63]

    [64]

    [65]

    [66]

    [67]

    [68]

    [69]

    [70]

    [71]

    [72]

    [73]

    [74]

    [75]

    [76]

    [77]

    [78]

    [79]

    [80]

    [81]

    [82]

    [83]

    [84]

    [85]

    [86]

    [87]

    [88]

    [89]

    [90]

    [91]

    [92]

    [93]

    [94]

    [95]

    [96]

    [97]

    [98]

    [99]

    [100]

    [101]

    [102]

    [103]

    [104]

    [105]

    [106]

    [107]

    [108]

    [109]

    [110]

    [111]

    [112]

    [113]

    [114]

    [115]

    [116]

    [117]

    [118]

    [119]

    [120]

    [121]

    [122]

    [123]

    [124]

    [125]

    [126]

    [127]

    [128]

    [129]

    [130]

    [131]

    [132]

    [133]

    [134]

    [135]

    [136]

    [137]

    [138]

    [139]

    [140]

    [141]

    [142]

    [143]

    [144]

    [145]

    [146]

    [147]

    [148]

    [149]

    [150]

    [151]

    [152]

    [153]

    [154]

    [155]

    [156]

    [157]

    [158]

    [159]

    [160]

    [161]

    [162]

    [163]

    [164]

    [165]

    [166]

    [167]

    [168]

    [169]

    [170]

    [171]

    [172]

    [173]

    [174]

    [175]

    [176]

    [177]

    [178]

    [179]

    [180]

    [181]

    [182]

  • 器件
    结构
    工作机制 开关电压 开关比 开关
    速度/ns
    保留
    时间
    耐久性
    (循环)
    功耗/
    能耗
    应用 文献
    Pt/HfAlOx/TaN VCM BRS:
    +1/–1 V
    50 4.28 aJ 手写数字识别 [171]
    Ta/Ta2O5:Ag/Ru ECM BRS:
    +0.7 V/–0.7 V
    100 ≈5×104 s 5×107 [42]
    Pt/YSZ/Zr VCM BRS:
    +0.7 V/–0.7 V
    2 104 s 108 [172]
    Ag/SnOx/SnSe ECM BRS: +0.4/–0.1 V >103 105 s 4000 [157]
    EGaIn/MACsPbI/
    PEDOT: PSS/ITO
    VCM BRS:
    +0.6/–0.41 V
    >105 105 s 104 3.8 mW [114]
    ITO/FA1–yMAyPbI3–xClx/
    (PEA)2PbI4/Au
    VCM BRS:
    +1.0/–0.5 V
    200 1 fJ 突触功能模拟 [49]
    Ag/PMMA/MAPbI3:
    Ag/Au
    ECM TS:±0.22 V 40 2500 10 μW 伤害传感器 [59]
    Ag/CsPbI3/Ag ECM TS:100 mV 100 ms 2 nW 储备池计算 [111]
    PET-ITO/MAPbI3/
    PEAI/Au
    VCM BRS:
    +1/–1 V
    50 13.5 aJ 神经元积分-
    发放功能
    [152]
    Ag/MoOx/
    CsI (CsBr)/Ag
    ECM BRS:
    –0.16/+0.07 V
    >1010 <200 >106 s >105 <3.31 pW 模拟手写数字分类 [62]
    Pt/CuI/Cu ECM BRS:
    +0.64/–0.19 V
    103 17 h 125 8.73 µW 图像硬件加密和解密 [10]
    Ag/PMMA/
    Cs2AgBiBr6/ITO
    ECM BRS:
    +0.6/–0.6 V
    >10 188 pJ 手写数字识别 [58]
    Pt/MoS2/Ti VCM BRS:
    +0.65/–0.90 V
    160 10 years 1×107 [117]
    Au/HfSe2/Au VCM BRS:
    +0.742/–0.817 V
    102 500 0.82 pJ 矩阵计算 [80]
    Ag/BNOx/Graphene ECM BRS: 0.6/0.1 V 100-1000 100 [75]
    Ag/Protein nanowires/Ag ECM TS:60 ± 4 mV 104 神经元-突触
    联立积分发放
    [126]
    Au/PBFCL10/Ag ECM BRS:
    +0.2/–0.2 V
    21 >106 s 2.35 μW HNN [131]
    ITO/PEDOT:PSS/
    pTPD/CsPbBr3NCs/Ag
    ECM TS:<1 V 103 105 s TS:2×106BRS:5.6×103 储备池计算 [154]
    Au/MSFP/Au VCM BRS:
    +1.0/–1.0 V
    104 s 100 图像处理 [106]
    ITO/PVK:TCNQ/Ag ECM BRS:
    +0.69/–0.52 V
    TS:0.21 V
    ≈103 104 s 104 15.2 μW 突触、神经元
    功能模拟
    [109]
    Au/TPPS/Au VCM BRS:
    –0.1/+0.3 V
    16.25 pW—
    2.06 nW
    突触模拟 [105]
    W(Ag)/PI/Pt/Ti ECM TS:0.56 V ≈103 0.44 ms 300 80 nW 图像处理 [107]
    Pt/CuZnS/Ag ECM Vset=0.089 V ≈106 >1000 s 100 0.1 nW 模式识别 [132]
    Pt/DDP-CuNPs/Au VCM TS:4 mV 100 SNN [145]
    Ag/c-YY NW/Ag ECM TS:≤0.1 V 106 750 fJ SNN [124]
    Ag/Ag-IPS/Au ECM BRS:
    +0.43/–0.21 V
    108 100 105 s 900 18.5 fJ 图像处理 [138]
    Ag/PMMA/MAPbI3:
    Ag/Au
    ECM TS:≈0.2 V 40 2500 伤害感受器 [59]
    Al/Ti3C2:Ag/Pt VCM BRS:
    +2.0/–2.0 V
    106 0.35 pJ 突触模拟 [137]
    Ag/TiO2:Ag/Pt ECM BRS:
    +0.1/–0.1 V
    26.0 pJ 突触模拟 [140]
    ITO/NiSAs/
    N-C/PVP/Au
    VCM BRS:
    +0.7/–1.1 V
    103 100 >106 s 500 全加器 [99]
    Au/silk: AgNO3/Ag ECM TS:0.17 V 3 × 106 103 s 100 突触模拟 [147]
    Ag/MXene/Pt ECM BRS:
    +1.33/–0.94 V
    >105 104 s 103 1~10 fJ ANN [149]
    Ag/a-COx/ta-C/Pt ECM BRS:1.5 V/–1.0 V 100 s 6 nW [155]
    Au/h-BN/Au VCM TS:0.1 V 107 40 >20000 s 500 逻辑门 [158]
    Ag/GeTe/MoTe2/Pt ECM BRS:
    +0.15/–0.14 V
    102 104 s 105 ≈30 nJ 突触模拟 [162]
    Ag/SnS/Pt ECM BRS:
    +0.2/–0.1 V
    108 1.5 105 s 104 100 fJ 图像分类 [73]
    DownLoad: CSV
    Baidu
  • [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

    [59]

    [60]

    [61]

    [62]

    [63]

    [64]

    [65]

    [66]

    [67]

    [68]

    [69]

    [70]

    [71]

    [72]

    [73]

    [74]

    [75]

    [76]

    [77]

    [78]

    [79]

    [80]

    [81]

    [82]

    [83]

    [84]

    [85]

    [86]

    [87]

    [88]

    [89]

    [90]

    [91]

    [92]

    [93]

    [94]

    [95]

    [96]

    [97]

    [98]

    [99]

    [100]

    [101]

    [102]

    [103]

    [104]

    [105]

    [106]

    [107]

    [108]

    [109]

    [110]

    [111]

    [112]

    [113]

    [114]

    [115]

    [116]

    [117]

    [118]

    [119]

    [120]

    [121]

    [122]

    [123]

    [124]

    [125]

    [126]

    [127]

    [128]

    [129]

    [130]

    [131]

    [132]

    [133]

    [134]

    [135]

    [136]

    [137]

    [138]

    [139]

    [140]

    [141]

    [142]

    [143]

    [144]

    [145]

    [146]

    [147]

    [148]

    [149]

    [150]

    [151]

    [152]

    [153]

    [154]

    [155]

    [156]

    [157]

    [158]

    [159]

    [160]

    [161]

    [162]

    [163]

    [164]

    [165]

    [166]

    [167]

    [168]

    [169]

    [170]

    [171]

    [172]

    [173]

    [174]

    [175]

    [176]

    [177]

    [178]

    [179]

    [180]

    [181]

    [182]

  • [1] Wu Chao-Jun, Fang Li-Yi, Yang Ning-Ning. Dynamic analysis and experiment of chaotic circuit of non-homogeneous fractional memristor with bias voltage source. Acta Physica Sinica, 2024, 73(1): 010501. doi: 10.7498/aps.73.20231211
    [2] Guo Hui-Meng, Liang Yan, Dong Yu-Jiao, Wang Guang-Yi. Simplification of Chua corsage memristor and hardware implementation of its neuron circuit. Acta Physica Sinica, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [3] Ren Kuan, Zhang Wo-Yu, Wang Fei, Guo Ze-Yu, Shang Da-Shan. Next-generation reservoir computing based on memristor array. Acta Physica Sinica, 2022, 71(14): 140701. doi: 10.7498/aps.71.20220082
    [4] Wen Xin-Yu, Wang Ya-Sai, He Yu-Hui, Miao Xiang-Shui. Memristive brain-like computing. Acta Physica Sinica, 2022, 71(14): 140501. doi: 10.7498/aps.71.20220666
    [5] Hu Wei, Liao Jian-Bin, Du Yong-Qian. An analytic modeling strategy for memristor cell applicable to large-scale memristive networks. Acta Physica Sinica, 2021, 70(17): 178505. doi: 10.7498/aps.70.20210116
    [6] Shi Chen-Yang, Min Guang-Zong, Liu Xiang-Yang. Research progress of protein-based memristor. Acta Physica Sinica, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [7] Xu Wei, Wang Yu-Qi, Li Yue-Feng, Gao Fei, Zhang Miao-Cheng, Lian Xiao-Juan, Wan Xiang, Xiao Jian, Tong Yi. Design of novel memristor-based neuromorphic circuit and its application in classical conditioning. Acta Physica Sinica, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [8] Shao Nan,  Zhang Sheng-Bing,  Shao Shu-Yuan. Mathematical model of memristor with sensory memory. Acta Physica Sinica, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [9] Shao Nan, Zhang Sheng-Bing, Shao Shu-Yuan. Analysis of memristor model with learning-experience behavior. Acta Physica Sinica, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [10] Wu Jie-Ning, Wang Li-Dan, Duan Shu-Kai. A memristor-based time-delay chaotic systems and pseudo-random sequence generator. Acta Physica Sinica, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [11] Li Dong-Dong, Zhou Wu. Low voltage scanning transmission electron microscopy for two-dimensional materials. Acta Physica Sinica, 2017, 66(21): 217303. doi: 10.7498/aps.66.217303
    [12] Yuan Ze-Shi, Li Hong-Tao, Zhu Xiao-Hua. A digital-analog hybrid random number generator based on memristor. Acta Physica Sinica, 2015, 64(24): 240503. doi: 10.7498/aps.64.240503
    [13] Liu Yu-Dong, Wang Lian-Ming. Application of memristor-based spiking neural network in image edge extraction. Acta Physica Sinica, 2014, 63(8): 080503. doi: 10.7498/aps.63.080503
    [14] Tian Xiao-Bo, Xu Hui, Li Qing-Jiang. Influence of the cross section area on the conductive characteristics of titanium oxide memristor. Acta Physica Sinica, 2014, 63(4): 048401. doi: 10.7498/aps.63.048401
    [15] Li Zhi-Jun, Zeng Yi-Cheng, Li Zhi-Bin. Memristive chaotic circuit based on modified SC-CNNs. Acta Physica Sinica, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [16] Liu Dong-Qing, Cheng Hai-Feng, Zhu Xuan, Wang Nan-Nan, Zhang Chao-Yang. Research progress of memristors and memristive mechanism. Acta Physica Sinica, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [17] Dong Zhe-Kang, Duan Shu-Kai, Hu Xiao-Fang, Wang Li-Dan. Two types of nanoscale nonlinear memristor models and their series-parallel circuits. Acta Physica Sinica, 2014, 63(12): 128502. doi: 10.7498/aps.63.128502
    [18] Xu Bi-Rong. A simplest parallel chaotic system of memristor. Acta Physica Sinica, 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [19] Jia Lin-Nan, Huang An-Ping, Zheng Xiao-Hu, Xiao Zhi-Song, Wang Mei. Progress of memristor modulated by interfacial effect. Acta Physica Sinica, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
    [20] Zhao Kong-Sheng, Xuan Rui-Jie, Han Xiao, Zhang Geng-Ming. Junctionless low-voltage thin-film transistors based on indium-tin-oxide. Acta Physica Sinica, 2012, 61(19): 197201. doi: 10.7498/aps.61.197201
Metrics
  • Abstract views:  1631
  • PDF Downloads:  139
  • Cited By: 0
Publishing process
  • Received Date:  23 July 2024
  • Accepted Date:  30 August 2024
  • Available Online:  07 September 2024
  • Published Online:  20 October 2024

返回文章
返回
Baidu
map