\begin{document}$\hat{H}=\displaystyle\sum\limits_{n}\left[t(a_n^{\dagger} b_n + b_n^{\dagger}a_n ) + J{\mathrm{e}}^{h}\left(a_n^{\dagger}b_{n + 1} + a_n^{\dagger} a_{n + 1} + Ab_n^{\dagger}a_{n + 1} + Ab_n^{\dagger}b_{n + 1}\right) + J{\mathrm{e}}^{ - h} \left(Aa_{n + 1}^{\dagger}b_n + a_{n + 1}^{\dagger}a_n + b_{n + 1}^{\dagger}a_n + Ab_{n + 1}^{\dagger}b_n\right)\right] $\end{document}with \begin{document}$A =\pm 1$\end{document}. When A = 1, the clean lattice supports two bands with dispersion relations \begin{document}$E_0=- t, $\end{document}\begin{document}$ E_1=4\cos (k - {\mathrm{i}}h) + t$\end{document}. The compact localized states (CLSs) within the flat band E0 are localized in one unit cell, indicating that the system is characterized by the U = 1 class. Conversely, for A = –1, there are two flat bands in the system: \begin{document}$E_{\pm}=\pm\sqrt{t^2 + 4}$\end{document}. The CLSs within the flat bands are localized in two unit cells, indicating that the system is marked by the U = 2 class. After introducing quasi-periodic modulations \begin{document}$\varepsilon_n^{\beta}=\lambda_{\beta}\cos(2\pi\alpha n + \phi_{\beta})$\end{document} (\begin{document}$\beta=\{a,b\}$\end{document}), delocalization-localization transitions can be observed by numerically calculating the fractal dimension D2 and imaginary part of the energy spectrum \begin{document}$\ln{|{\rm{Im}}(E)|}$\end{document}. Our findings indicate that the symmetry of quasi-periodic modulations plays an important role in determining the localization properties of the system. For the case of \begin{document}$U=1$\end{document}, the symmetric quasi-periodic modulation leads to two independent spectra \begin{document}$\sigma_f$\end{document} and \begin{document}$\sigma_p$\end{document}. The \begin{document}$\sigma_f$\end{document} retains its compact properties, while the \begin{document}$\sigma_p$\end{document} owns an extended-localized transition at \begin{document}$\lambda_{{\mathrm{c}}1}=4M$\end{document} with \begin{document}$M=\max\{{\mathrm{e}}^{h},\;{\mathrm{e}}^{ - h}\}$\end{document}. However, in the case of antisymmetric modulation, the system exhibits an exact mobility edge \begin{document}$\lambda_{{\mathrm{c}}2}=2\sqrt{2|E - t|M}$\end{document}. For the U = 2 class, all the eigenstates remain localized under any symmetric quasi-periodic modulation. In the case of antisymmetric modulation, all states transition from multifractal to localized states as the modulation strength increases, with a critical point at \begin{document}$\lambda_{{\mathrm{c}}3}=4M$\end{document}. This work expands the understanding of localization properties in non-Hermitian flat-band systems and provides a new perspective on delocalization-localization transitions."> - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Liu Hui, Lu Zhan-Peng, Xu Zhi-Hao
    PDF
    HTML
    Get Citation
    Metrics
    • Abstract views:1004
    • PDF Downloads:37
    • Cited By:0
    Publishing process
    • Received Date:12 April 2024
    • Accepted Date:08 May 2024
    • Available Online:22 May 2024
    • Published Online:05 July 2024

      返回文章
      返回
        Baidu
        map