1995 J. Phys. B: At. Mol. Opt. Phys. 28 2711) reveals that the EISI cross section considering only the ground state is significantly smaller than the experimental result. Therefore, it is imperative to take into account the contribution from the metastable state. To determine the fraction of ions in long-lived energy levels within the parent ion beam, three models are employed.Our results, which include the contribution of metastable states, accord well with the experimental results of Stenke et al. Compared with the theoretical calculation result of Pindzola et al. our calculaiton provides a more comprehensive understanding of the electron-impact single-ionization process for W6+ ions. The comparison is illustrated in the attached figure."> Theoretical investigation of electron-impact ionization of W<sup>6+</sup> ion - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Ma Li-Li, Zhang Shi-Ping, Zhang Fang-Jun, Li Mai-Juan, Jiang Jun, Ding Xiao-Bin, Xie Lu-You, Zhang Deng-Hong, Dong Chen-Zhong
    PDF
    HTML
    Get Citation
    • Due to its unique characteristics, metal tungsten has been selected as the wall material for the tokamak magnetic confinement fusion device. The wall material directly interacts with the plasma for a long time, thus causing tungsten atoms and ions to be sputtered and ionized into different charge states, which then enter the tokamak device as plasma impurities. To ensure stable plasma combustion conditions, highly complex model is currently being used to evaluate the behavior of tungsten impurities and their influence on the tokamak plasma. This requires various high-precision atomic data for tungsten atoms and different ionized states of tungsten ions. Electron collision ionization, as a fundamental atomic physical process, is widely encountered in laboratory and astrophysical plasma environments. The parameters such as electron collision ionization cross-sections and rate coefficients are crucial for plasma radiation transport simulations and state diagnostics. Electron-impact single-ionization (EISI) cross sections of the ground state and metastable state for W 6+ions are calculated by using the level-to-level distorted-wave (LLDW) method. The contributions of direct ionization (DI) cross section and excited autoionization (EA) cross section to the total EISI cross section are primarily considered. Comparison of our calculation results with the experimental data from Stenke et al. (Stenke M, Aichele K, Harthiramani D, Hofmann G, Steidl M, Volpel R, Salzborn E 1995 J. Phys. B: At. Mol. Opt. Phys. 282711 ) reveals that the EISI cross section considering only the ground state is significantly smaller than the experimental result. Therefore, it is imperative to take into account the contribution from the metastable state. To determine the fraction of ions in long-lived energy levels within the parent ion beam, three models are employed. Our results, which include the contribution of metastable states, accord well with the experimental results of Stenke et al. Compared with the theoretical calculation result of Pindzola et al. our calculaiton provides a more comprehensive understanding of the electron-impact single-ionization process for W 6+ions. The comparison is illustrated in the attached figure.
          Corresponding author:Zhang Deng-Hong,zhangdh@nwnu.edu.cn
        • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 12364034) and the Science and Technology Project of Gansu Province, China (Grant No. 23YFFA0074).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

      • Configuration Method 5d 4f 5p 5s 4d
        5p6 FAC 118.28 120.19 166.43 334.88
        MCDF[28] 119.0 120.6 166.8 335.9
        NIST[29] 122.01$ \pm $0.06 122.11$ \pm $0.06
        5p55d1 FAC 81.85 120.45 122.14 164.24
        MCDF[28] 81.95 120.9 122.4 164.2
        DownLoad: CSV

        Configuration Index Level J Energy/eV Lifetimes/s Configuration Index Level J Energy/eV Lifetimes/s
        5p6 0 $ 5{{\mathrm{p}}}_{+}^{4} $ 0 0 30 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{f}}}_{+}^{1} $ 4 78.81 8.70×10–1
        4f135d1 1 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{-}^{1} $ 2 36.18 2.63×10–1 31 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{f}}}_{+}^{1} $ 2 79.10 4.12×10–1
        2 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{-}^{1} $ 3 37.44 2.11×10–1 32 $ 5{{\mathrm{p}}}_{-}^{1}5{{\mathrm{f}}}_{-}^{1} $ 3 89.54 7.15×10–5
        3 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{-}^{1} $ 4 37.72 3.38×10–1 33 $ 5{{\mathrm{p}}}_{-}^{1}5{{\mathrm{f}}}_{+}^{1} $ 3 89.61 7.18×10–5
        4 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{+}^{1} $ 6 37.98 6.19×10–2 34 $ 5{{\mathrm{p}}}_{-}^{1}5{{\mathrm{f}}}_{+}^{1} $ 4 89.70 7.00×10–5
        5 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{+}^{1} $ 2 38.29 2.59×10–2 35 $ 5{{\mathrm{p}}}_{-}^{1}5{{\mathrm{f}}}_{+}^{1} $ 2 90.00 6.78×10–5
        6 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{+}^{1} $ 4 38.78 1.26×10–2 4f135f1 36 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{+}^{1} $ 1 75.70 1.23×10+2
        7 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{+}^{1} $ 3 38.94 2.03×10–2 37 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{-}^{1} $ 2 75.72 1.48×10+1
        8 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{+}^{1} $ 5 39.10 2.75×10–2 38 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{-}^{1} $ 6 75.77 1.92×10+4
        9 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{+}^{1} $ 4 39.22 1.10×10–2 39 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{+}^{1} $ 3 75.91 4.47×10+1
        10 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{d}}}_{+}^{1} $ 0 39.41 8.02×10–2 40 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{-}^{1} $ 3 76.12 4.60×10+2
        11 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{d}}}_{-}^{1} $ 2 39.53 5.97×10–3 41 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{-}^{1} $ 4 76.13 6.76×10+1
        12 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{d}}}_{-}^{1} $ 3 40.23 5.14×10–2 42 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{-}^{1} $ 5 76.17 2.11×10+1
        13 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{d}}}_{+}^{1} $ 5 40.52 4.06×10–3 43 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{+}^{1} $ 2 76.18 2.97
        14 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{d}}}_{+}^{1} $ 2 40.79 4.96×10–3 44 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{+}^{1} $ 5 76.20 2.95×10+1
        15 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{d}}}_{+}^{1} $ 3 41.23 4.39×10–3 45 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{+}^{1} $ 6 76.22 1.67×10+1
        16 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{d}}}_{+}^{1} $ 4 41.37 4.69×10–3 46 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{+}^{1} $ 4 76.26 6.77×10+1
        5p55d1 17 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{d}}}_{-}^{1} $ 1 39.18 3.16×10+1 47 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{+}^{1} $ 0 76.81 3.36×10–2
        18 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{d}}}_{-}^{1} $ 3 40.64 5.40×10–1 48 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{+}^{1} $ 1 77.73 1.31×10–2
        19 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{d}}}_{-}^{1} $ 2 40.69 1.17×10–2 49 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{-}^{1} $ 1 78.01 1.19×10–2
        20 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{d}}}_{-}^{1} $ 4 40.88 3.15 50 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{-}^{1} $ 5 78.03 1.10×10–2
        21 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{d}}}_{-}^{1} $ 2 41.76 1.11×10–2 51 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{+}^{1} $ 6 78.11 1.06×10–2
        22 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{d}}}_{-}^{1} $ 3 43.18 7.07×10–3 52 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{+}^{1} $ 2 78.16 1.11×10–2
        23 $ 5{{\mathrm{p}}}_{-}^{1}5{{\mathrm{d}}}_{-}^{1} $ 2 51.40 4.05×10–5 53 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{+}^{1} $ 3 78.31 1.07×10–2
        24 $ 5{{\mathrm{p}}}_{-}^{1}5{{\mathrm{d}}}_{+}^{1} $ 2 52.83 4.30×10–5 54 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{-}^{1} $ 3 78.40 1.10×10–2
        25 $ 5{{\mathrm{p}}}_{-}^{1}5{{\mathrm{d}}}_{+}^{1} $ 3 53.44 3.42×10–5 55 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{-}^{1} $ 2 78.44 9.91×10–3
        5p55f1 26 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{f}}}_{-}^{1} $ 2 77.81 2.43 56 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{+}^{1} $ 4 78.47 1.07×10–2
        27 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{f}}}_{-}^{1} $ 4 78.11 1.75×10+1 57 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{-}^{1} $ 4 78.50 1.04×10–2
        28 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{f}}}_{+}^{1} $ 3 78.31 1.13 58 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{+}^{1} $ 5 78.50 1.06×10–2
        29 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{f}}}_{-}^{1} $ 3 78.70 9.02×10–1 59 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{-}^{1} $ 0 86.47 3.52×10–4
        DownLoad: CSV

        Configurations Energy range
        (Model 1)/eV
        Energy range
        (Model 2)/eV
        [0, 118] [118, 1000] [0, 118] [118, 1000]
        5p6 0 0.35 0 0.31
        4f135d1 0.40 0.10 0.35 0.10
        5p55d1 0.40 0.11 0.35 0.12
        5p55f1 0.10 0.22 0.15 0.23
        4f135f1 0.10 0.22 0.15 0.24
        DownLoad: CSV

        Level index Energy range/eV Level index Energy range/eV
        [0, 118] [118, 1000] [0, 118] [118, 1000]
        0 0 0.31000 30 0.00800 0.02300
        1 0.04468 0.00625 31 0.00800 0.02300
        2 0.04468 0.00625 32 0.00800 0.02300
        3 0.04468 0.00625 33 0.00800 0.02300
        4 0.04468 0.00625 34 0.00800 0.02300
        5 0.04469 0.00625 35 0.00800 0.02300
        6 0.04469 0.00625 36 0.00333 0.01000
        7 0.04469 0.00625 37 0.00333 0.01000
        8 0.04469 0.00625 38 0.00333 0.01000
        9 0.04469 0.00625 39 0.00333 0.01000
        10 0.04469 0.00625 40 0.00333 0.01000
        11 0.04469 0.00625 41 0.00333 0.01000
        12 0.04469 0.00625 42 0.00333 0.01000
        13 0.04469 0.00625 43 0.00333 0.01000
        14 0.04469 0.00625 44 0.00333 0.01000
        15 0.04469 0.00625 45 0.00333 0.01000
        16 0.04469 0.00625 46 0.00333 0.01000
        17 0.13880 0.01333 47 0.00333 0.01000
        18 0.13890 0.01333 48 0.00333 0.01000
        19 0.13890 0.01333 49 0.00333 0.01000
        20 0.13890 0.01333 50 0.00333 0.01000
        21 0.13890 0.01333 51 0.00333 0.01000
        22 0.13890 0.01333 52 0.00334 0.01000
        23 0.13890 0.01334 53 0.00334 0.01000
        24 0.13890 0.01334 54 0.00334 0.01000
        25 0.13890 0.01334 55 0.00334 0.01000
        26 0.00800 0.02300 56 0.00334 0.01000
        27 0.00800 0.02300 57 0.00334 0.01000
        28 0.00800 0.02300 58 0.00334 0.01000
        29 0.00800 0.02300 59 0.00334 0.01000
        DownLoad: CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

      • [1] Du Xiao-Jiao, Wei Long, Sun Yu, Hu Shui-Ming.Free electron laser prepared high-intensity metastable helium and helium-like ions. Acta Physica Sinica, 2024, 73(15): 150201.doi:10.7498/aps.73.20240554
        [2] Zhou Xu, Wang Chuan, Hu Rong-Hao, Tao Zhi-Hao, Deng Xiao-Liang, Liang Yi-Han, Li Xiao-Ya, Lü Meng, Zhu Wen-Jun.Fast computation approach of electron-impact ionization and excitation cross-sections for atoms and ions with medium- and high-Zelements. Acta Physica Sinica, 2024, 73(10): 103104.doi:10.7498/aps.73.20240213
        [3] Mo Jia-Wei, Qiu Yin-Wei, Yi Ruo-Bing, Wu Jun, Wang Zhi-Kun, Zhao Li-Hua.Temperature-dependent properties of metastable graphene oxide. Acta Physica Sinica, 2019, 68(15): 156501.doi:10.7498/aps.68.20190670
        [4] Luo Yin-Hong, Zhang Feng-Qi, Wang Yan-Ping, Wang Yuan-Ming, Guo Xiao-Qiang, Guo Hong-Xia.Single event upsets sensitivity of low energy proton in nanometer static random access memory. Acta Physica Sinica, 2016, 65(6): 068501.doi:10.7498/aps.65.068501
        [5] Tan Wen-Jing, An Zhu, Zhu Jing-Jun, Zhao Jian-Ling, Liu Man-Tian.Bremsstrahlung spectra produced by 10-25 keV electron impact on thick W, Au targets. Acta Physica Sinica, 2016, 65(11): 113401.doi:10.7498/aps.65.113401
        [6] Jing Ming, Deng Wei, Wang Hao, Ji Yan-Jie.Two-lane cellular automaton traffic model based on car following behavior. Acta Physica Sinica, 2012, 61(24): 244502.doi:10.7498/aps.61.244502
        [7] Zheng Liang, Ma Shou-Feng, Jia Ning.The cellular automaton model of traffic flow based on the driving behavior. Acta Physica Sinica, 2010, 59(7): 4490-4498.doi:10.7498/aps.59.4490
        [8] Yang Ning-Xuan, Jiang Jun, Xie Lu-You, Dong Chen-Zhong.The effects of the Breit interaction on electron impact excitation cross sections of the 1s2s3S1 metastable level of He-like ions. Acta Physica Sinica, 2008, 57(5): 2888-2894.doi:10.7498/aps.57.2888
        [9] Chen Shi_Dong, Zhu Liu_Hua, Kong Ling_Jiang, Liu Mu_Ren.The effect of Noise-First and anticipation headway on traffic flow. Acta Physica Sinica, 2007, 56(5): 2517-2522.doi:10.7498/aps.56.2517
        [10] Qiao Xiu-Mei, Zhang Guo-Ping, Zhang Tan-Xin.Modeling RAL experiment to test our simulation. Acta Physica Sinica, 2006, 55(3): 1181-1185.doi:10.7498/aps.55.1181
        [11] Wang Guang-Jun, Wang Fang, Shen Bao-Gen.Coexistence of ferromagnetic and antiferromagnetic phases in compound LaFe11.4Al1.6. Acta Physica Sinica, 2005, 54(3): 1410-1414.doi:10.7498/aps.54.1410
        [12] Kuang Hua, Kong Ling-Jiang, Liu Mu-Ren.The study of the effect of delay probability on mixed vehiclessensitive driving traffic flow model. Acta Physica Sinica, 2004, 53(12): 4138-4144.doi:10.7498/aps.53.4138
        [13] Jin Yi, Pan Bai-Liang, Chen Gang, Chen Kun, Yao Zhi-Xin.Numerical study on the terminating mechanisms of copper vapor laser pulse. Acta Physica Sinica, 2004, 53(6): 1799-1803.doi:10.7498/aps.53.1799
        [14] Lei Li, Xue Yu, Dai Shi-Qiang.One-dimensional sensitive driving cellular automaton model for traffic flow. Acta Physica Sinica, 2003, 52(9): 2121-2126.doi:10.7498/aps.52.2121
        [15] QI JING-BO, CHEN CHONG-YANG, WANG YAN-SEN.ELECTRON IMPACT IONIZATION CROSS SECTIONS FOR THE Na-LIKE IONS. Acta Physica Sinica, 2001, 50(8): 1475-1480.doi:10.7498/aps.50.1475
        [16] TENG HUA-GUO, XU ZHI-ZHAN, HU WEI, WANG YAN-SEN, FANG DU-FEI.THE EXCITATION-AUTOIONIZATION OF Na-LIKE Cu ION. Acta Physica Sinica, 1996, 45(11): 1788-1792.doi:10.7498/aps.45.1788
        [17] Fang Quan-Yu, Cai Wei, Shen Zhi-Jun, Li Peng, Zhou Yu, Xu Yuan-Guang, Chen Guo-Xin.. Acta Physica Sinica, 1995, 44(3): 383-395.doi:10.7498/aps.44.383
        [18] FANG DU-FEI, WANG YAN-SEN, HU WEI, GAO HAI-BIN, LU FU-QUAN.ELECTRON IMPACT IONIZATION CROSS SECTIONS OF BORON-LIKE IONS. Acta Physica Sinica, 1993, 42(1): 40-45.doi:10.7498/aps.42.40
        [19] HU WEI, FANG DU-FEI, WANG YAN-SEN, LU FU-QUAN, TANG JIA-YONG, YANG FU-JIA.ELECTRON IMPACT IONIZATION CROSS SECTION FOR LITHIUM-LIKE IONS INCLUDING EXCITATION-AUTOIONIZATION CROSS SECTION. Acta Physica Sinica, 1993, 42(9): 1416-1421.doi:10.7498/aps.42.1416
        [20] SHEN JUN-FENG, XU YUN-FEI, WU BI-RU, ZHENG YOU-FENG, LU JIE, WANG YUN-XIAN.THE AUTOIONIZAT10N SPECTRA OF NEUTRAL YTTERBIUM BY LASER THREE-STEP EXCITATION. Acta Physica Sinica, 1992, 41(5): 732-739.doi:10.7498/aps.41.732
      Metrics
      • Abstract views:769
      • PDF Downloads:35
      • Cited By:0
      Publishing process
      • Received Date:21 March 2024
      • Accepted Date:24 April 2024
      • Available Online:09 May 2024
      • Published Online:20 June 2024

        返回文章
        返回
          Baidu
          map