[1] |
Zhang Xu, Ding Jin-Min, Hou Chen-Yang, Zhao Yi-Ming, Liu Hong-Wei, Liang Sheng.Machine learning based laser homogenization method. Acta Physica Sinica, 2024, 73(16): 164205.doi:10.7498/aps.73.20240747 |
[2] |
Zhang Jia-Hui.Machine learning forin silicoprotein research. Acta Physica Sinica, 2024, 73(6): 069301.doi:10.7498/aps.73.20231618 |
[3] |
Ying Da-Wei, Zhang Si-Hui, Deng Shu-Jin, Wu Hai-Bin.Single shot imaging for cold atoms based on machine learning. Acta Physica Sinica, 2023, 72(14): 144201.doi:10.7498/aps.72.20230449 |
[4] |
Guo Wei-Chen, Ai Bao-Quan, He Liang.Reveal flocking phase transition of self-propelled active particles by machine learning regression uncertainty. Acta Physica Sinica, 2023, 72(20): 200701.doi:10.7498/aps.72.20230896 |
[5] |
Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang.Application of machine learning in cosmic ray particle identification. Acta Physica Sinica, 2023, 72(14): 140202.doi:10.7498/aps.72.20230334 |
[6] |
Guan Xing-Yue, Huang Heng-Yan, Peng Hua-Qi, Liu Yan-Hang, Li Wen-Fei, Wang Wei.Machine learning in molecular simulations of biomolecules. Acta Physica Sinica, 2023, 72(24): 248708.doi:10.7498/aps.72.20231624 |
[7] |
Ding Ye-Zhang, Ye Yin, Li Duo-Sheng, Xu Feng, Lang Wen-Chang, Liu Jun-Hong, Wen Xin.Molecular dynamics simulation of graphene deposition and growth on WC-Co cemented carbides. Acta Physica Sinica, 2023, 72(6): 068703.doi:10.7498/aps.72.20221332 |
[8] |
Yang Zhang-Zhang, Liu Li, Wan Zhi-Tao, Fu Jia, Fan Qun-Chao, Xie Feng, Zhang Yi, Ma Jie.Combining machine learning algorithm to improve prediction performance of ab initio method for vibrational energy spectra of HF/HBr/H35Cl/Na35Cl. Acta Physica Sinica, 2023, 72(7): 073101.doi:10.7498/aps.72.20221953 |
[9] |
Zhang Yi-Fan, Ren Wei, Wang Wei-Li, Ding Shu-Jian, Li Nan, Chang Liang, Zhou Qian.Machine learning combined with solid solution strengthening model for predicting hardness of high entropy alloys. Acta Physica Sinica, 2023, 72(18): 180701.doi:10.7498/aps.72.20230646 |
[10] |
Ai Fei, Liu Zhi-Bing, Zhang Yuan-Tao.Numerical study of discharge characteristics of atmospheric dielectric barrier discharges by integrating machine learning. Acta Physica Sinica, 2022, 71(24): 245201.doi:10.7498/aps.71.20221555 |
[11] |
Kang Jun-Feng, Feng Song-Jiang, Zou Qian, Li Yan-Jie, Ding Rui-Qiang, Zhong Quan-Jia.Machine learning based method of correcting nonlinear local Lyapunov vectors ensemble forecasting. Acta Physica Sinica, 2022, 71(8): 080503.doi:10.7498/aps.71.20212260 |
[12] |
Zhang Jia-Wei, Yao Hong-Bo, Zhang Yuan-Zheng, Jiang Wei-Bo, Wu Yong-Hui, Zhang Ya-Ju, Ao Tian-Yong, Zheng Hai-Wu.Self-powered sensing based on triboelectric nanogenerator through machine learning and its application. Acta Physica Sinica, 2022, 71(7): 078702.doi:10.7498/aps.71.20211632 |
[13] |
Li Wei, Long Lian-Chun, Liu Jing-Yi, Yang Yang.Classification of magnetic ground states and prediction of magnetic moments of inorganic magnetic materials based on machine learning. Acta Physica Sinica, 2022, 71(6): 060202.doi:10.7498/aps.71.20211625 |
[14] |
Liu Wu, Zhu Cheng-Wan, Li Hao-Tian, Zhao Su-Ling, Qiao Bo, Xu Zheng, Song Dan-Dan.Optimization of Ga content gradient in Cu(In,Ga)Se2solar cells through machine learning and device simulation. Acta Physica Sinica, 2021, 70(23): 238802.doi:10.7498/aps.70.20211234 |
[15] |
Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng.Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, 2021, 70(14): 140306.doi:10.7498/aps.70.20210831 |
[16] |
Chen Jiang-Zhi, Yang Chen-Wen, Ren Jie.Machine learning based on wave and diffusion physical systems. Acta Physica Sinica, 2021, 70(14): 144204.doi:10.7498/aps.70.20210879 |
[17] |
Yang Zi-Xin, Gao Zhang-Ran, Sun Xiao-Fan, Cai Hong-Ling, Zhang Feng-Ming, Wu Xiao-Shan.High critical transition temperature of lead-based perovskite ferroelectric crystals: A machine learning study. Acta Physica Sinica, 2019, 68(21): 210502.doi:10.7498/aps.68.20190942 |
[18] |
Man Tian-Nan, Zhang Lin, Xiang Zhao-Long, Wang Wen-Bin, Gao Jian-Wen, Wang En-Gang.Effects of adding Ti on microstructure and properties of Al-Bi immiscible alloy. Acta Physica Sinica, 2018, 67(3): 036101.doi:10.7498/aps.67.20172256 |
[19] |
Yang Neng-Wu, Peng Wen-Yi, Yan Ming-Ming, Wang Wei-Wei, Shi Hai-Ping.Influence of aging time on mechanical properties and microstructures of FeNiAlTa shape memory alloy. Acta Physica Sinica, 2013, 62(15): 158106.doi:10.7498/aps.62.158106 |
[20] |
Yang Hai-Bo, Hu Ming, Zhang Wei, Zhang Xu-Rui, Li De-Jun, Wang Ming-Xia.Nanoindentation investigation of the hardness and Young’s modulus of porous silicon depending on microstructure. Acta Physica Sinica, 2007, 56(7): 4032-4038.doi:10.7498/aps.56.4032 |