Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

Liu Ruo-Shui, Wang Li-Chen, Yu Xiang, Sun Yang, He Shi-Yue, Zhao Tong-Yun, Shen Bao-Gen
PDF
HTML
Get Citation
  • La-Co co-substituted M-type ferrite, which was first reported at the end of the 20th century, as the cornerstone of high-performance permanent magnet ferrites, has received increasing attention from researchers around the world. The unquenched orbital moments of Co 2+play a pivotal role in enhancing the uniaxial anisotropy of M-type ferrites. However, a comprehensive understanding of its microscopic mechanism remains elusive. In order to meet the increasing performance requirements of ferrite materials, it is imperative to clarify the mechanism behind the enhancement of magnetic anisotropy, and at the same time seek the guiding principles that are helpful to develop high-performance product quickly and economically. But its mechanism at a microscopic level has not been explained. This review comprehensively analyzes various studies aiming at pinpointing the crystal sites of Co substitution within the lattice. These investigations including neutron diffraction, nuclear magnetic resonance, and Mössbauer spectroscopy can reveal the fundamental origins behind the enhancement of magnetic anisotropy, thereby providing valuable insights for material design strategies aiming at further enhancing the magnetic properties of permanent magnet ferrites. The exploration of co-substitution sites has yielded noteworthy findings. Through careful examination and analysis, researchers have discovered the complex interplay between Co ions and the lattice structure, revealing the mechanisms of enhanced magnetic anisotropy. The current mainstream view is that Co ions tend to occupy more than one site, namely the 4 f 1, 12 k, and 2 asites, all of which are located within the spinel lattice. However, there have also been differing viewpoints, implying that further exploration is needed to uncover the primary controlling factors influencing Co occupancy. It is worth noting that the identification of specific Co substitution sites, especially the spin-down tetrahedron 4 f 1, has achieved targeted modifications, ultimately fine-tuning the magnetic properties with remarkable precision. Furthermore, the reviewed research emphasizes the pivotal role of crystallographic engineering in tailoring the magnetic characteristics of ferrite materials. By strategically manipulating Co substitution, researchers have utilized the intrinsic properties of the lattice to amplify magnetic anisotropy, thereby unlocking new avenues for the advancement of permanent magnet ferrites. In conclusion, the collective findings outlined in this review herald a promising trajectory for the field of permanent magnet ferrites. With a detailed understanding of Co-substitution mechanisms, researchers are preparing to open up new avenues for developing next-generation ferrite materials with enhanced magnetic properties.
        Corresponding author:Shen Bao-Gen,shenbaogen@nimte.ac.cn
      • Funds:Project supported by the Basic Science Center Program of the National Science Foundation of China (Grant No. 52088101), the Kunpeng Plan of Zhejiang Province, China, and the Ningbo Top Talent Program, Zhejiang, China.
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

    • 公司 国家 牌号 Br/mT Hcb/(kA·m–1) HcJ/(kA·m–1) (BH)max/(kJ·m–3)
      TDK[23] 日本 FB13B 475 340 380 44.0
      FB14H 470 355 430 43.1
      日立金属[31] NMF-15 480 342 382 44.0
      横店东磁[27] 中国 DM4748 460 328 368 41.5
      北矿磁材[28] BMS-9.3 420 318 398 33.5
      江益磁材[29] JPM-12B 450 310 350 38.2
      龙磁科技[30] SM13N 450 278 298 38.1
      DownLoad: CSV

      元素 Wyckoff晶位 氧配位数 晶位形状 磁矩方向
      A 2d 12
      Fe 2a 6 八面体
      2b 5 双锥体
      4f1 4 四面体
      4f2 6 八面体
      12k 6 八面体
      DownLoad: CSV

      样品 作者和年份 国家 检测方法 Co2+占位
      2a 2b 4f1 4f2 12k
      多晶 Pieper等, 2002[100] 澳大利亚 57Fe-NMR
      Pieper等, 2002[101] 57Fe,139La和59Co-NMR
      Moral等, 2002[102] 法国 57Fe-Mössbauer, Raman
      Le Breton等, 2002[103] 57Fe-Mössbauer
      Wiesinger等, 2002[104] 澳大利亚 57Fe-Mössbauer,57Fe和59Co-NMR
      Lechevallier等, 2003[97] 法国 57Fe-Mössbauer
      Lechevallier等, 2004[105] 57Fe-Mössbauer
      Choi等, 2006[106] 韩国 57Fe-Mössbauer
      Kobayashi等, 2011[107] 日本 Neutron Diffraction, EXAFS, XMCD
      Kouřil, 2013[109] 捷克 57Fe-NMR
      Wu等, 2015[110] 中国 Raman, XPS
      Ohtsuka等, 2016[111] 日本 TEM-EDXS
      Mahadevan等, 2020[112] 印度 57Fe-Mössbauer, Raman
      单晶 Nagasawa等, 2016[113] 日本 57Fe-Mössbauer
      Oura等, 2018[114] 57Fe-Mössbauer, XES
      Sakai等, 2018[115] 57Fe和59Co-NMR
      Nakamura等, 2019[116] 59Co-NMR
      Nagasawa等, 2020[117] 外场作用下的57Fe-Mössbauer
      DownLoad: CSV

      样品 制备方法 替代浓度 5 K时的磁各向异性场HA/kOe
      x y
      Sr1–xLaxFe12–yCoyO19[140] Na2O助熔剂法生长的单晶 0 0 17.50
      0.055 0.032 17.22
      0.139 0.077 19.46
      0.242 0.108 18.62
      0.289 0.152 21.57
      0.367 0.212 24.36
      0.511 0.161 22.17
      0.472 0.266 25.57
      Sr1–xLaxFe12–yCoyO19[142] 高氧压移动溶剂浮区法生长的单晶 0.2 0.2 21.77
      0.4 0.4 27.96
      Sr1–xLaxFe12–yCoyO19[143] 高氧压固相反应法合成的多晶 0.21 0.21 21.18
      0.30 0.30 21.76
      0.39 0.39 24.41
      0.41 0.41 27.06
      0.72 0.72 34.12
      0.93 0.93 42.35
      1.00 1.00 56.76
      Ca13–nxLaxFenyCoyO19
      (n= 11.87—11.93,
      根据不同Co替代量
      而改变)[144]
      CaO助熔剂法生长的单晶 0.52 0.07 15.26
      0.52 0.10 17.35
      0.56 0.17 23.15
      0.48 0.16 25.65
      0.59 0.27 28.31
      0.37 0.17 26.89
      0.56 0.36 31.54
      NaaxLaxFenyCoyO19(a= 0.25—0.41,
      n= 11.84—11.97, 根据不同Co
      替代量而改变)[145]
      Na2O助熔剂法生长的单晶 0.82 0.12 25.72
      0.79 0.21 25.61
      0.83 0.31 29.61
      DownLoad: CSV

      模型 2a 2b 4f1 4f2 12k
      1 1.00
      2 1.00
      3 0.35 0.65
      4 0.31 0.69
      5 0.88 0.12
      6 0.47 0.53
      7 0.22 0.38 0.40
      DownLoad: CSV

      类别 高自旋 低自旋
      八面体 四面体 双锥体
      Co2+(d7) 3/2 1/2 1/2
      Co3+(d6) 2 0 1 1
      DownLoad: CSV

      记号 中心频率/MHz 局域场大小/T 相对丰度
      S1 86 8.6 0.73
      S2 307 30.6 0.16
      S3 386 38.5 0.11
      S4 529 52.7 <0.002
      DownLoad: CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

    • [1] Ju Hai-Lang, Xiang Ping-Ping, Wang Wei, Li Bao-He.Enhancement of perpendicular magnetic anisotropy and thermal stability in Co/Ni multilayers by MgO/Pt interfaces. Acta Physica Sinica, 2015, 64(19): 197501.doi:10.7498/aps.64.197501
      [2] Ju Hai-Lang, Li Bao-He, Wu Zhi-Fang, Zhang Fan, Liu Shuai, Yu Guang-Hua.Perpendicular magnetic anisotropy in Co/Ni multilayers studied by anomalous Hall effect. Acta Physica Sinica, 2015, 64(9): 097501.doi:10.7498/aps.64.097501
      [3] Hao Yan-Ming, Wang Ling-Ling, Yan Da-Li, An Li-Qun.Structure and magnetic properties of Sm2Fe17-xCrxcompound prepared by arc melting. Acta Physica Sinica, 2009, 58(10): 7222-7226.doi:10.7498/aps.58.7222
      [4] Guo Yu-Xian, Wang Jie, Xu Peng-Shou, Li Hong-Hong, Cai Jian-Wang.Element-specific in-plane magnetic anisotropy in Co0.9Fe0.1 films. Acta Physica Sinica, 2007, 56(2): 1121-1126.doi:10.7498/aps.56.1121
      [5] Wang Wen-Quan, Xu Shi-Feng, Xu Qin-Ying, Zhang Wen-Liang, Chen Dong-Feng.Structure and magnetic properties of (Nd1-xGdx)3 Fe27.31Ti1.69 compounds. Acta Physica Sinica, 2006, 55(7): 3531-3535.doi:10.7498/aps.55.3531
      [6] Luo Hong-Zhi, Jia Lin, Li Yang-Xian, Meng Fan-Bin, Shen Jiang, Chen Nan-Xian, Wu Guang-Heng, Yang Fu-Ming.Structure and magnetic properties of (Nd1-xErx)3Fe25Cr4.0 compounds. Acta Physica Sinica, 2005, 54(5): 2176-2182.doi:10.7498/aps.54.2176
      [7] Guo Guang-Hua, Zhang Hai-Bei.Magnetocrystalline anisotropy and spin-reorientation transition of intermetallic compound HoMn6Sn6. Acta Physica Sinica, 2005, 54(12): 5879-5883.doi:10.7498/aps.54.5879
      [8] Du Jun, Sun Liang, Sheng Wen-Ting, You Biao, Lu Mu, Hu An, M. M. Corte-Real, J. Q. Xiao.In-plane ferromagnetic resonance in nano-composite Fe-R-O(R=Hf Nd Dy)films. Acta Physica Sinica, 2004, 53(7): 2352-2356.doi:10.7498/aps.53.2352
      [9] Wang Wen-Quan, Yan Yu, Wang Xiang-Qun, Wang Xue-Feng, Jin Han-Min.Structural and magnetic properties of (Nd1-xErx)3Fe273Ti17 compounds. Acta Physica Sinica, 2003, 52(3): 641-646.doi:10.7498/aps.52.641
      [10] Wang Wen-Quan, Yan Yu, Wang Xue-Feng, Su Feng, Wang Xiang-Qun, Jin Han-Min.Structural and magnetic properties of RCo12-xTix(R=Y and Sm) compounds. Acta Physica Sinica, 2003, 52(1): 150-155.doi:10.7498/aps.52.150
      [11] Wang Wen-Quan, Yan Yu, Wang Xiang-Qun, Wang Xue-Feng, Su Feng, Jin Han-Min.Structural and magnetic properties of Gd3 Co29-xCrx compounds. Acta Physica Sinica, 2003, 52(3): 647-651.doi:10.7498/aps.52.647
      [12] Liu Xian-Song, Zhong Wei, Yang Sen, Jiang Hong-Ying, Gu Ben-Xi, Du You-Wei.. Acta Physica Sinica, 2002, 51(5): 1128-1132.doi:10.7498/aps.51.1128
      [13] Li An-Hua, Dong Sheng-Zhi, Li Wei.. Acta Physica Sinica, 2002, 51(10): 2320-2324.doi:10.7498/aps.51.2320
      [14] Feng Quan-Yuan.. Acta Physica Sinica, 2002, 51(11): 2612-2616.doi:10.7498/aps.51.2612
      [15] Wang Wei, Zhang Xi-Juan, Yang Cui-Hong, Cheng Hai-Ying.ThemagnetocrystallineanisotropyofEr3 Ga5O1 2underhighmagneticfield. Acta Physica Sinica, 2002, 51(12): 2846-2848.doi:10.7498/aps.51.2846
      [16] WANG WEN-QUAN, WANG JIAN-LI, TANG NING, BAO FU-QUAN, WU GUANG-HENG, YANG FU-MING, JIN HAN-MIN.FORMATION AND STRUCTURE OF 3∶29-TYPE GdGd3(Fe1-xCox)29-yCry COMPOUNDS. Acta Physica Sinica, 2001, 50(8): 1534-1539.doi:10.7498/aps.50.1534
      [17] WANG WEN-QUAN, WANG JIAN-LI, TANG NING, BAO FU-QUAN, WU GUANG-HENG, YANG FU-MING, JIN HAN-MIN.Sm-Co-Ti PHASE DIAGRAM AND STRUCTURAL AND MAGNETIC PROPERTIES OF SOME SINGLE-PHASE COMPOUNDS. Acta Physica Sinica, 2001, 50(4): 752-757.doi:10.7498/aps.50.752
      [18] .. Acta Physica Sinica, 2000, 49(2): 355-360.doi:10.7498/aps.49.355
      [19] GUAN PENG, LIU YI-HUA, GUO YI-CHENG.INDUCED ANISOTROPY IN Co-Zr AMORPHOUS FILMS. Acta Physica Sinica, 1989, 38(12): 2029-2033.doi:10.7498/aps.38.2029
      [20] XU YOU, YANG GUI-LIN, CAI HENG, ZHAI HONG-RU.THE MAGNET OCRYSTALLINE AN1SOTROPY OF W-TYPE HEXAGONAL FERR1TES. Acta Physica Sinica, 1985, 34(7): 901-907.doi:10.7498/aps.34.901
    Metrics
    • Abstract views:1285
    • PDF Downloads:102
    • Cited By:0
    Publishing process
    • Received Date:29 January 2024
    • Accepted Date:17 April 2024
    • Available Online:28 April 2024
    • Published Online:20 June 2024

      返回文章
      返回
        Baidu
        map