Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

Wei Yuan-Fei, Tang Zhi-Ming, Li Cheng-Bin, Huang Xue-Ren
PDF
HTML
Get Citation
  • In quantum optical experiments, the polarizabilities of atomic systems play a very important role, which can be used to describe the interactions of atomic systems with external electromagnetic fields. When subjected to a specific electric field such as a laser field with a particular frequency, the frequency-dependent electric-dipole (E1) dynamic polarizability of an atomic state can reach zero. The wavelength corresponding to such a frequency is referred to as the “turn-out” wavelength. In this work, the “turn-out” wavelengths for the 3s 2 1S 0and 3s3p 3P 0clock states of Al +are calculated by using the configuration interaction plus many-body perturbation theory (CI+MBPT) method. The values of energy and E1 reduced matrix elements of low-lying states of Al +are calculated. By combining these E1 reduced matrix elements with the experimental energy values, the E1 dynamic polarizabilities of the 3s 2 1S 0and 3s3p 3P 0clock states are determined in the angular frequency range of (0, 0.42 a.u.). The “turn-out” wavelengths are found at the zero-crossing points of the frequency-dependent dynamic polarizability curves for both the 3s 2 1S 0and 3s3p 3P 0states. For the ground state 3s 2 1S 0, a single “turn-out” wavelength at 266.994(1) nm is observed. On the other hand, the excited state 3s3p 3P 0exhibits four distinct “turn-out” wavelengths, namely 184.56(1) nm, 174.433(1) nm, 121.52(2) nm, and 119.71(2) nm. The contributions of individual resonant transitions to the dynamic polarizabilities at the “turn-out” wavelengths are examined. It is observed that the resonant lines situated near a certain “turn-out” wavelength can provide dominant contributions to the polarizability, while the remaining resonant lines generally contribute minimally. When analyzing these data, we recommend accurately measuring these “turn-out” wavelengths to accurately determine the oscillator strengths or reduced matrix elements of the relevant transitions. This is crucial for minimizing the uncertainty of the blackbody radiation (BBR) frequency shift in Al +optical clock and suppressing the systematic uncertainty. Meanwhile, precisely measuring these “turn-out” wavelengths is also helpful for further exploring the atomic structure of Al +.
        Corresponding author:Li Cheng-Bin,cbli@wipm.ac.cn; Huang Xue-Ren,hxueren@wipm.ac.cn
      • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 11934014, 11904387, 11704076, U1732140) and the National High Technology Research and Development Program of China (Grant Nos. 2017YFA0304401, 2017YFA0304402).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

    • State CI CI+MBPT +Breit NIST Diff./% Refs.
      3s21S0 376617 381043 380973 381308 –0.088 381332[19], 379582[26], 381287[27], 382024[28]
      3s3p3P0 36256 37342 37344 37393.03 –0.13 37396[19], 37395[26], 37374[27], 37191[28]
      3s3p3P1 36318 37407 37405 37453.91 –0.13 37457[19], 37452[26], 37457[28], 36705[29]
      3p21P1 59538 59905 59893 59852.02 0.069 59768[19], 60111[26], 60723[27], 54410[28], 63000[30]
      3s4s3S1 90008 91254 91233 91274.50 –0.045 91279[19], 91043[26], 91262[27], 91274[28]
      3p23P1 92660 94107 94097 94147.46 –0.053 94151[19], 93380[26], 93735[28]
      3s3d3D1 94171 95490 95462 95551.44 –0.093 95527[19], 95253[26], 95695[28]
      3s4p3P1 103975 105387 105366 105441.50 –0.071
      3s4p1P1 105574 106880 106858 106920.56 –0.058
      3p21S0 110488 111779 111779 111637.33 0.11
      3s5s3S1 118590 120047 120022 120092.919 –0.059
      3s4d3D1 119971 121422 121395 121484.252 –0.073
      3s5p3P1 124142 125648 125624 125708.828 –0.068
      3s5p1P1 124322 125814 125790 125869.015 –0.063
      3s6s3S1 130638 132160 132134 132215.52 –0.061
      3s5d3D1 131247 132761 132734 132822.95 –0.067
      3s6p1P1 133307 134861 134835 134919.40 –0.062
      3s6p3P1 133409 134954 134928 135015.70 –0.065
      3s6d3D1 137210 138754 138727 138814.87 –0.064
      3s7p1P1 138244 139828 139802 139918.98 –0.084
      3s7p3P1 138422 139987 139960 140091.9 –0.094
      3s8p1P1 140927 142519 142493 142961.20 –0.33
      3s8p3P1 141127 142711 142685 143166.76 0.34
      3s7d3D1 140741 142300 142274 142365.54 –0.065
      3s9p1P1 143591 145260 145233 144941.10 0.20
      3s9s3S1 142835 144377 144350 144644.14 –0.20
      3s8d3D1 143118 144686 144658 144642.0 0.012
      DownLoad: CSV

      Method CI CI+MBPT Recommend Refs.
      Gauge Length Velocity Length Velocity
      3s21S0-3s3p3P1 0.0092 0.0101 0.0098 0.0105 0.0098(13) 0.01513[26]
      3s21S0-3s3p1P1 3.1830 3.1572 3.1156 3.1156 3.116(67) 3.112[19]
      2.840[26]
      3s21S0-3s4p3P1 0.0018 0.0017 0.0022 0.0018 0.002(1)
      3s21S0-3s4p1P1 0.0844 0.0781 0.0460 0.0737 0.046(38) 0.045[19]
      3s21S0-3s5p3P1 0.0037 0.0038 0.0051 0.0043 0.005(2)
      3s21S0-3s5p1P1 0.0474 0.0502 0.0662 0.0491 0.066(19)
      3s21S0-3s6p1P1 0.0595 0.0610 0.0704 0.0586 0.070(12)
      3s21S0-3s6p3P1 0.0013 0.0014 0.0023 0.0017 0.002(1)
      3s21S0-3s7p1P1 0.0575 0.0582 0.0638 0.0551 0.064(9)
      3s21S0-3s7p3P1 0.0015 0.0015 0.0022 0.0019 0.002(1)
      3s21S0-3s8p1P1 0.0493 0.0496 0.0505 0.0448 0.051(6)
      3s21S0-3s8p3P1 0.0199 0.0200 0.0250 0.0220 0.025(5)
      3s21S0-3s9p1P1 0.0759 0.0758 0.0784 0.0718 0.078(7)
      3s3p3P0-3s4s3S1 0.8936 0.8888 0.8979 0.8926 0.898(10) 0.900[19]
      3s3p3P0-3p23P1 1.8870 1.8737 1.8394 1.8789 1.839(48) 1.836[19]
      3s3p3P0-3s3d3D1 2.2623 2.2820 2.2350 2.2626 2.235(47) 2.236[19]
      3s3p3P0-3s5s3S1 0.2671 0.2652 0.2690 0.2661 0.269(4)
      3s3p3P0-3s4d3D1 0.4651 0.4746 0.4456 0.4612 0.446(28)
      3s3p3P0-3s6s3S1 0.1492 0.1481 0.1505 0.1486 0.151(2)
      3s3p3P0-3s5d3D1 0.2058 0.2118 0.1921 0.2029 0.192(20)
      3s3p3P0-3s7s3S1 0.0421 0.0418 0.0414 0.0422 0.041(1)
      3s3p3P0-3s6d3D1 0.1199 0.1242 0.1097 0.1178 0.110(13)
      3s3p3P0-3s8s3S1 0.1012 0.1004 0.1027 0.1005 0.103(2)
      3s3p3P0-3s7d3D1 0.0802 0.0836 0.0722 0.0787 0.072(12)
      3s3p3P0-3s9s3S1 0.0990 0.0983 0.0991 0.0986 0.099(1)
      3s3p3P0-3s8d3D1 0.0642 0.0673 0.0571 0.0630 0.057(10)
      DownLoad: CSV

      Transition Contributions Ref.
      $ \alpha \left(0\right)( $3s21S0$ ) $
      3s21S0-3s3p3P1 0.003
      3s21S0-3s3p1P1 23.73 23.661[19]
      23.7294[27]
      3s21S0-3s4p3P1 6.5×10–6
      3s21S0-3s4p1P1 0.0029 0.003[19]
      3s21S0-3s5p3P1 3.0×10–5
      3s21S0-3s5p1P1 0.0051
      3s21S0-3snp3P1,n= 6—8 0.0006
      3s21S0-3snp1P1,n= 6—9 0.0184
      Others 0.1135
      Core 0.265[19] 0.268[27]
      VC –0.019[19]
      Total 24.1169 24.048[19]
      24.1396[27]
      $ \alpha \left(0\right)( $3s21S0$ ) $
      3s3p3P0-3s4s3S1 2.1886 2.197[19]
      2.1860[27]
      3s3p3P0-3p23P1 8.7226 8.687[19]
      8.6830[27]
      3s3p3P0-3s3d3D1 12.5817 12.568[19]
      12.6533[27]
      3s3p3P0-3s5s3S1 0.1281
      3s3p3P0-3s4d3D1 0.3451
      3s3p3P1-3sns3S1,n= 6—9 0.0656
      3s3p3P1-3snd3D1,n= 5—8 0.0855
      Others 0.2117
      Core 0.256[19] 0.268[27]
      VC –0.010[19]
      Total 24.5840 24.543[19]
      $ {{\Delta }}\alpha \left(0\right) $ 0.467 0.495[19]
      0.482[27]
      0.426Expt.[4]
      DownLoad: CSV

      3s21S0 3s3p3P0
      $ {\lambda }_{0} $/nm 266.994(1) 184.56(7) 174.4(1) 121.5(1) 119.7(2)
      $ {\omega }_{0} $/a.u. 0.170653(2) 0.24688(7) 0.26171(15) 0.3750(3) 0.3806(6)
      $ {\alpha }_{0}\left({\lambda }_{0}\right)( $3s21S0$ ) $
      3s21S0-3s3p3P1 39.3927 –0.0003 0.0003 –9.1×10–5 –8.7×10–5
      3s21S0-3s3p1P1 39.0038 131.4864 287.4679 –26.6523 –25.0333
      3s21S0-3s4p3P1 7.5×10–6 8.9×10–6 9.3×10–6 1.7×10–5 1.8×10–5
      3s21S0-3s4p1P1 0.0033 0.0039 0.0041 0.0071 0.0074
      3s21S0-3s5p3P1 3.3×10–5 3.7×10–5 3.8×10–5 5.3×10–5 5.4×10–5
      3s21S0-3s5p1P1 0.0056 0.0062 0.0064 0.0089 0.0091
      3s21S0-3snp3P1,n= 6—8 0.0007 0.0008 0.0008 0.0010 0.0010
      3s21S0-3snp1P1,n= 6—9 0.0198 0.0216 0.0221 0.0281 0.0285
      Others 0.1135 0.1135 0.1135 0.1135 0.1135
      Core 0.265 0.265 0.265 0.265 0.265
      VC –0.019 –0.019 –0.019 –0.019 –0.019
      Total 0 131.8781 287.8605 –26.2478 –24.6278
      $ {\alpha }_{0}\left({\lambda }_{0}\right)( $3s3p3P0$ ) $
      3s3p3P0-3s4s3S1 4.2349 –195.2541 –16.5755 –1.6425 –1.5594
      3s3p3P0-3p23P1 15.4522 98.4756 –429.0192 –7.9128 7.4784
      3s3p3P0-3s3d3D1 21.4976 95.2803 444.0076 –12.5559 –11.8356
      3s3p3P0-3s5s3S1 0.1612 0.2245 0.2466 12.9773 –6.3146
      3s3p3P0-3s4d3D1 0.4305 0.5901 0.6448 8.1466 26.1561
      3s3p3P1-3sns3S1,n= 6—9 0.0765 0.0936 0.0987 0.2203 0.2388
      3s3p3P1-3snd3D1,n= 5—8 0.1001 0.1234 0.1303 0.3005 0.3264
      Others 0.2117 0.2117 0.2117 0.2117 0.2117
      Core 0.265 0.265 0.265 0.265 0.265
      VC –0.010 –0.010 –0.010 –0.010 –0.010
      Total 42.4197 0 0 0 0
      DownLoad: CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

    • [1] Liu Zhi-Hui, Liu Xiao-Na, He Jun, Liu Yao, Su Nan, Cai Ting, Du Yi-Jie, Wang Jie-Ying, Pei Dong-Liang, Wang Jun-Min.Tune-out wavelengths of Rydberg atoms. Acta Physica Sinica, 2024, 73(13): 130701.doi:10.7498/aps.73.20240397
      [2] Zeng Tao, Dong Yu-Chen, Wang Tian-Hao, Tian Long, Huang Chu-Yi, Tang Jian, Zhang Jun-Pei, Yu Yi, Tong Xin, Fan Qun-Chao.Finite element analysis of zero magnetic field shielding for polarized neutron scattering. Acta Physica Sinica, 2023, 72(14): 142801.doi:10.7498/aps.72.20230559
      [3] Chen Chi-Ting, Wu Lei, Wang Xia, Wang Ting, Liu Yan-Jun, Jiang Jun, Dong Chen-Zhong.Theoretical study of static dipole polarizabilities and hyperpolarizability of B2+and B+ions. Acta Physica Sinica, 2023, 72(14): 143101.doi:10.7498/aps.72.20221990
      [4] Wang Ting, Jiang Li, Wang Xia, Dong Chen-Zhong, Wu Zhong-Wen, Jiang Jun.Theoretical study of polarizabilities and hyperpolarizabilities of Be+ions and Li atoms. Acta Physica Sinica, 2021, 70(4): 043101.doi:10.7498/aps.70.20201386
      [5] Zhang Ting-Xian, Li Ji-Guang, Liu Jian-Peng.Theoretical study on the isotope shift factors for the 3s2 1S0 → 3s3p 3,1P1o transitions in Al+ ion. Acta Physica Sinica, 2018, 67(5): 053101.doi:10.7498/aps.67.20172261
      [6] Zhang Chen-Jun, Wang Yang-Li, Chen Chao-Kang.Density functional theory of InCn+(n=110) clusters. Acta Physica Sinica, 2018, 67(11): 113101.doi:10.7498/aps.67.20172662
      [7] Chen Ze-Zhang.Theoretical study on the polarizability properties of liquid crystal in the THz range. Acta Physica Sinica, 2016, 65(14): 143101.doi:10.7498/aps.65.143101
      [8] Xu Sheng-Nan, Liu Tian-Yuan, Sun Mei-Jiao, Li Shuo, Fang Wen-Hui, Sun Cheng-Lin, Li Zuo-Wei.Solvent effects on the electron-vibration coupling constant of β-carotene. Acta Physica Sinica, 2014, 63(16): 167801.doi:10.7498/aps.63.167801
      [9] Wen Jun-Qing, Zhang Jian-Min, Yao Pan, Zhou Hong, Wang Jun-Fei.A density functional theory study of small bimetallic PdnAl (n =18) clusters. Acta Physica Sinica, 2014, 63(11): 113101.doi:10.7498/aps.63.113101
      [10] Guo Zhao, Lu Bin, Jiang Xue, Zhao Ji-Jun.Structural, electronic, and optical properties of Li-n-1, Lin and Li+ n+1(n=20, 40) clusters by first-principles calculations. Acta Physica Sinica, 2011, 60(1): 013601.doi:10.7498/aps.60.013601
      [11] Zhu Xing-Bo, Zhang Hao, Feng Zhi-Gang, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang.Experimental investigation of Stark effect of ultra-cold 39D cesium Rydberg atoms. Acta Physica Sinica, 2010, 59(4): 2401-2405.doi:10.7498/aps.59.2401
      [12] Yao Jian-Ming, Yang Chong.Spin-dependent transport through a multi-electrodes controlled by an Aharonov-Bohm ring. Acta Physica Sinica, 2009, 58(5): 3390-3396.doi:10.7498/aps.58.3390
      [13] Wang Da-Lin, Sun Jun-Qiang, Wang Jian.High-speed data format conversion from non-return-to-zero to return-to-zero based on periodically poled lithium niobate waveguides. Acta Physica Sinica, 2008, 57(1): 252-259.doi:10.7498/aps.57.252
      [14] Lin Jie, Liu Shao-Jun, Li Rong-Wu, Zhu Wen-Jun.Free energy method and the melting point of aluminum under the zero pressure. Acta Physica Sinica, 2008, 57(1): 61-66.doi:10.7498/aps.57.61
      [15] Liu Zhao-Jun, Wu Guo-Zhen.A study of the surface enhanced Raman bond polarizability derivatives of ethylene thiourea:electromagnetic and charge transfer mechanisms. Acta Physica Sinica, 2006, 55(12): 6315-6319.doi:10.7498/aps.55.6315
      [16] Zhang Yun-Dong, Sun Xu-Tao, He Zhu-Song.Theoretical model of laser-induced dispersion optical filter. Acta Physica Sinica, 2005, 54(7): 3000-3004.doi:10.7498/aps.54.3000
      [17] Ma Xiao-Guang, Sun Wei-Guo, Cheng Yan-Song.A new expression for photoionization cross sections and its application in high density system. Acta Physica Sinica, 2005, 54(3): 1149-1155.doi:10.7498/aps.54.1149
      [18] Han Ding-An, Guo Hong, Sun Hui, Bai Yan-Feng.The frequency modulation effects of the probe field in three level Λ-system. Acta Physica Sinica, 2004, 53(6): 1793-1798.doi:10.7498/aps.53.1793
      [19] Cai Li, Ma Xi-Kui, Wang Sen.Study of hyperchaotic behavior in quantum cellular neural networks. Acta Physica Sinica, 2003, 52(12): 3002-3006.doi:10.7498/aps.52.3002
      [20] HE XING-HONG, LI BAI-WEN, ZHANG CHENG-XIU.POLARIZABILITIES OF HIGH RYDBERG ALKALI ATOMS. Acta Physica Sinica, 1989, 38(10): 1717-1722.doi:10.7498/aps.38.1717
    Metrics
    • Abstract views:1385
    • PDF Downloads:114
    • Cited By:0
    Publishing process
    • Received Date:26 January 2024
    • Accepted Date:05 March 2024
    • Available Online:03 April 2024
    • Published Online:20 May 2024

      返回文章
      返回
        Baidu
        map