-
Material with Kagome lattice provides an excellent platform for studying electronic correlation effects, topological states of matter, unconventional superconductivity, and geometric frustration. The recently discovered Kagome superconductors AV 3Sb 5( A= K, Rb, Cs) have attracted widespread attention in the field of condensed matter physics, and many efforts have been made to elucidate their novel physical properties, such as charge density wave, unconventional superconductivity, and band topology. Meanwhile, many groups have effectively tuned these novel properties through chemical doping, offering a good opportunity for further understanding the materials of this system. In this paper, we comprehensively review the latest research progress of the doping effect of this rapidly developed AV 3Sb 5system, with the objective of further promoting the in-depth research into Kagome superconductor. Specifically, we review the chemical doping in CsV 3Sb 5with elements such as Nb, Ta, Ti, and Sn, and the surface doping with elements Cs or O as well, and describe their influences on the novel quantum properties, especially superconductivity, charge density wave, and electronic band structure of the material. Furthermore, the intricate physical mechanism of doping manipulation is discussed, in order to provide a basic knowledge for further understanding and studying the rich quantum effects of the system, such as charge density waves, time reversal symmetry breaking, and superconductivity.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] -
掺杂位置 掺杂元素 电荷密度波 超导 反常霍尔效应 能带结构及费米面位置变化 掺杂类型 掺杂极限/% V Nb 抑制 增强 抑制 Γ点电子口袋扩张, 范霍夫奇点上移 等价掺杂 7 V Ta 抑制 增强 抑制 Γ点电子口袋扩张, 范霍夫奇点上移 等价掺杂 14 V Ti 抑制 待定 抑制 费米面降低,Γ点电子口袋减小, 范霍夫奇点上移 空穴 10 V Mo 增强 抑制 — — 电子 3.5 V Cr 抑制 抑制 抑制 — 电子 25 Sb Sn 抑制 双穹顶状 — 费米面降低,Γ点电子口袋减小, 范霍夫奇点上移 空穴 20 Sb As 抑制 增强 抑制 — 等价掺杂 2.3 Cs K 抑制 抑制 — — 等价掺杂 100 Cs Rb 抑制 增强 — — 等价掺杂 100 表面 Cs 抑制 — — 费米面上升,Γ点电子口袋扩张 电子 — 表面 O 抑制 穹顶状 — 范霍夫奇点上移,Γ点电子口袋减小 空穴 — -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71]
Catalog
Metrics
- Abstract views:1968
- PDF Downloads:152
- Cited By:0