Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Chen Hong-Mei, Li Shi-Wei, Li Kai-Jing, Zhang Zhi-Yong, Chen Hao, Wang Ting-Ting
    PDF
    HTML
    Get Citation
    • Nematic liquid crystal materials designed for optics, microwave communication tuning, etc. need high response speed, which is related to the rotational viscosity and the birefringent index of the liquid crystal. In order to achieve a wide tuning range of phase modulation, the nematic liquid crystals often employ large π-electron conjugated systems and large polar groups to enhance the birefringence and dielectric anisotropy of the liquid crystal molecule, which, however, increases the viscosity of the liquid crystal material, deteriorating the response speed of the microwave device. Herein, we explore the viscosity of the nematic liquid crystal from the perspective of liquid crystal compound structure by testing the viscosity of our designed and synthesized forty-two different nematic liquid crystals by using a rotating rheometer at 25 ℃. To the best of our knowledge, the BPNN-QSAR quantitative structure-activity model between nematic liquid crystal molecular structure and viscosity is established for the first time. The correlation coefficient between the predicted value and the experimental value is q 2= 0.607 > 0.5, indicating that the model can be used to predict the viscosity performances of liquid crystal compounds. Besides, the molecular structure descriptors affecting the viscosity properties are explored. Based on the practical application and this model, seven liquid crystal molecules of two series with large birefringent index are designed and tested. The viscosity predicted by the BPNN model is smaller than that of the molecules of the same type and matches with the measured viscosity.
          Corresponding author:Wang Ting-Ting,1125364902@qq.com
        • Funds:Project supported by the National Equipment Development Department Pre-research Fund (Grant No. 61409230701).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

      • 序号 化合物 分子结构 分子量/(g·mol–1) 混晶黏度η/
        (mPa·s–1)
        相变温度T/℃
        1 3CC2 236.25 19.647 Cr –8.3 N 93.0 Iso
        2 3CC4 264.28 20.983 Cr –10.9 N 66.8 Iso
        3 5CPF 248.19 23.914 Liquid
        4 3CPO1 232.18 21.619 Cr 32.0 Iso
        5 5PP1 238.17 22.624 Cr 48.0 Iso
        6 3GPS 271.08 24.313 Cr 45.0 Iso
        7 2CPUS 357.14 23.961 Cr 50.0 N 175.0 Iso
        8 5CPUS 399.18 24.874 Cr 50.5 N 196.3 Iso
        9 3PGUF 344.12 24.694 Cr 62.5 Iso
        10 5PGUF 372.15 25.021 Cr 56.4 Iso
        11 5PGUS 411.13 26.486 Cr 57.4 N 159.2 Iso
        12 5CPGUF 454.23 25.983 Cr 62.23 S 70
        N 215 Iso
        13 5CPGUS 493.21 26.400 Cr 71.53 N 234.15 Iso
        14 5PGUOCF3 438.14 26.242 Cr 47.4 N 69.3 Iso
        15 5CPGUOCF3 520.22 26.558 Cr 58.10 S 82.6
        N 230.35 Iso
        16 4PGPUF 434.17 24.884 Cr 96.8
        SmC 111.9
        SmA 214.6
        N 231.4 Iso
        17 5PP(2)GIP4 478.30 26.865 Cr 53.55 S 72.65
        N 109.84 Iso
        18 3PUQUF 428.10 25.191 Cr 47.2 Iso
        19 3PGUQUF 522.12 26.205 Cr 88 N 135 Iso
        20 3CEPC3 370.29 21.039 Cr 116.7 N 205.9 Iso
        21 2CEPPN 333.17 21.072 Cr 89.0 N 245.6 Iso
        22 3CPEP3 364.24 22.042 Cr 100.7 N 202.9 Iso
        23 3CPEGN 365.18 23.498 Cr 107.1 N 214.4 Iso
        24 2PEPN 251.09 20.946 Cr 77.6 N 80.9 Iso
        25 3PEPN 265.11 22.869 Cr 108.1 N 113.5 Iso 51.9 N
        26 4PEPN 279.13 24.478 Cr 71.3 N 74.2 Iso
        27 3PTGS 295.08 22.476 Cr 55.22 S 69.37 Iso
        28 5PTGS 323.11 23.248 Cr 50.59 N 90.59 Iso
        29 7PTGS 351.15 24.016 Cr 41.98 N 45.06 Iso
        30 5PTPO2 292.18 21.512 Cr 65.6 N 95.3 Iso 88.3 N
        31 5PTUS 341.1 22.577 Cr 43.99 Iso
        32 5CPTUS 423.18 22.974 Cr 62 N 228 Iso
        33 5PPTUS 417.14 23.809 Cr 55.0 S 119.0 N 208.5 Iso
        34 4PUTGS 421.11 22.559 Cr 93 Iso
        35 2PTPP3 360.17 22.768 Cr 73.5 N 186 Iso
        36 3PTPP2 360.17 22.583 Cr 73 N 189 Iso
        37 3PTPP4 388.20 23.682 Cr 66.1 S 88.0 N 169.5 Iso
        38 4PTPP3 388.29 23.445 Cr 38.5 S 60.0 N 174.0 Iso
        39 4PTGTP4 444.21 26.201 Cr 78 N 180 Iso
        40 4PTGTP5 458.22 26.918 Cr 72.12 N 172.81 Iso
        41 5PP(1)PUF 444.21 25.014 Cr 76.9 N 127.6 Iso
        42 5PPI(1)PUF 444.21 24.608 Cr 77.4 N 134 Iso
        43 5CB 249.15 25.010 Cr 24 N 35.3 Iso
        注: Cr, 各向异性晶体相; S, 近晶相; N, 向列相; Iso, 各向同性; SmA, SmA相态; SmC, SmC相态.
        DownLoad: CSV

        网络结构 R2 R2(cross-validated) q2
        12-4-1 0.9238 0.5089 0.6070
        DownLoad: CSV

        No. Compounds η/(mPa·s) $ {{\mathrm{VM}}}_{{\mathrm{expt}}} $ $ {{\mathrm{VM}}}_{{\mathrm{pred}}} $ $ \Delta {\mathrm{VM}} $ δ
        1* 3CC2 19.647 1.293 1.319 0.026 0.020
        2 3CC4 20.983 1.322 1.318 0.004 0.003
        3 5CPF 23.914 1.379 1.376 0.002 0.002
        4 3CPO1 21.619 1.335 1.336 0.001 0.001
        5 5PP1 22.624 1.355 1.357 0.002 0.001
        6 3GPS 24.313 1.386 1.363 0.023 0.017
        7* 2CPUS 23.961 1.380 1.378 0.002 0.001
        8 5CPUS 24.874 1.396 1.401 0.006 0.004
        9 3PGUF 24.694 1.393 1.396 0.004 0.002
        10* 5PGUF 25.021 1.398 1.405 0.006 0.004
        11 5PGUS 26.486 1.423 1.425 0.002 0.001
        12 5CPGUF 25.983 1.415 1.414 0.000 0.001
        13 5CPGUS 26.400 1.422 1.418 0.004 0.003
        14 5PGUOCF3 26.242 1.419 1.417 0.002 0.001
        15 5CPGUOCF3 26.558 1.424 1.424 –0.001 0.000
        16 4PGPUF 24.884 1.396 1.410 0.014 0.010
        17 5PP(2)GIP4 26.865 1.429 1.426 0.003 0.002
        18 3PUQUF 25.191 1.401 1.411 0.010 0.007
        19 3PGUQUF 26.205 1.418 1.411 0.007 0.005
        20 3CEPC3 21.039 1.323 1.326 0.003 0.002
        21 2CEPPN 21.072 1.324 1.320 0.003 0.003
        22 3CPEP3 22.042 1.343 1.344 0.001 0.001
        23 3CPEGN 23.498 1.371 1.365 0.006 0.004
        24 2PEPN 20.946 1.321 1.341 0.020 0.015
        25* 3PEPN 22.869 1.359 1.353 0.006 0.004
        26 4PEPN 24.478 1.389 1.365 0.024 0.017
        27 3PTGS 22.476 1.352 1.347 0.005 0.004
        28* 5PTGS 23.248 1.366 1.372 0.006 0.004
        29 7PTGS 24.916 1.396 1.401 0.004 0.004
        30 5PTPO2 21.512 1.333 1.337 0.004 0.003
        31 5PTUS 22.577 1.354 1.364 0.011 0.007
        32 5CPTUS 22.974 1.361 1.367 0.006 0.004
        33* 5PPTUS 23.809 1.377 1.427 0.050 0.036
        34 4PUTGS 22.559 1.353 1.364 0.011 0.008
        35 2PTPP3 22.768 1.357 1.353 0.004 0.003
        36 3PTPP2 22.583 1.354 1.345 0.009 0.007
        37* 3PTPP4 23.682 1.374 1.374 -0.001 0.001
        38 4PTPP3 23.445 1.370 1.366 0.004 0.003
        39* 4PTGTP4 26.201 1.418 1.398 0.020 0.014
        40 4PTGTP5 26.918 1.430 1.427 -0.003 0.002
        41 5PP(1)PUF 25.014 1.398 1.412 0.014 0.010
        42 5PPI(1)PUF 24.608 1.391 1.406 0.015 0.011
        注: *为测试组数据.
        DownLoad: CSV

        描述符 结构信息 敏感度
        ES-Count-aasC 代表具有两个芳香键和一个单键的碳的电拓扑状态 (Electrotopological State, Estate)和电子结构信息 0.999735
        Dipole-X 指示静电场中分子的强度和取向行为的3D电子描述符 0.947414
        Num-RotatableBonds 可旋转键, 定义为既不在环中又不在末端的重原子之间的单键, 即连接到仅与
        氢相连的重原子. 作为一种特殊情况, 酰胺C—N键是不可旋转的
        0.814023
        Shadow-Xlength 阴影X长度, 表征分子形状的一组几何描述符, 代表分子在x维度上的长度 0.307771
        ES-Sum-sssCH 计算具有三个单键的CH的电拓扑状态(Estate)总和 0.208536
        JX Balaban指数 0.118169
        ES-Count-tsC 代表具有一个三键的碳的电拓扑状态(Estate)计数 –0.707114
        ES-Count-ssCH2 代表具有两个单键的CH2的电拓扑状态(Estate)计数 –0.671564
        Wiener 维纳指数, 代表分子中所有重原子对之间存在的化学键的总和 –0.653192
        ES-Sum-sF 计算F原子的电拓扑状态(Estate) –0.400111
        ES-Count-sF F原子的电拓扑状态(Estate)计数 –0.400111
        ALogP 使用Ghose和Crippen发表的基于原子的方法计算辛醇-水分配系(LogP) –0.128786
        注: ES-Sum-xxx: 某原子电子结构和拓扑结构计算总和; ES-Count-xxx: 某种类型的原子在分子中出现的数目; -xxx中s, 单键; d, 双键; t, 三键; a, 芳香键[38,39].
        DownLoad: CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

      • [1] Wang Zi-Ling, Ye Jia-Yao, Huang Zhi-Jun, Song Zhen-Peng, Li Bing-Xiang, Xiao Rui-Lin, Lu Yan-Qing.Formation and annihilation of electrically driven defects in nematic liquid crystals with negative dielectric anisotropy. Acta Physica Sinica, 2024, 73(5): 056101.doi:10.7498/aps.73.20231655
        [2] Wang Hao-Ran, Zhang Yin-Chuan, Hu Wei, Guo Qi.Saturable nonlinearity and bistable solitons in nematic liquid crystals. Acta Physica Sinica, 2023, 72(7): 074204.doi:10.7498/aps.72.20222088
        [3] Liang De-Shan, Huang Hou-Bing, Zhao Ya-Nan, Liu Zhu-Hong, Wang Hao-Yu, Ma Xing-Qiao.Size effect of topological charge in disc-like nematic liquid crystal films. Acta Physica Sinica, 2021, 70(4): 044202.doi:10.7498/aps.70.20201623
        [4] Zhang Ying, Zheng Yu, He Mao-Gang.Improvement of dynamic light scattering method for measurement of particle diameter and liquid viscosity. Acta Physica Sinica, 2018, 67(16): 167801.doi:10.7498/aps.67.20180271
        [5] Shang Ji-Xiang, Zhao Yun-Bo, Hu Li-Na.Abnormal viscosity changes in high-temperature metallic melts. Acta Physica Sinica, 2018, 67(10): 106402.doi:10.7498/aps.67.20172721
        [6] Hao Dan-Hui, Kong Fan-Jie, Jiang Gang.Structure and potential energy function of PuNO molecules. Acta Physica Sinica, 2015, 64(15): 153103.doi:10.7498/aps.64.153103
        [7] An Bao-Lin, Lin Hong, Liu Qiang, Duan Yuan-Yuan.Viscosity measurements using a cylindrical resonator. Acta Physica Sinica, 2013, 62(17): 175101.doi:10.7498/aps.62.175101
        [8] Liu Yong-Jun, Sun Wei-Min, Liu Xiao-Qi, Yao Li-Shuang, Lu Xing-Hai, Xuan Li.Investigation of the tunable laser of one-dimensional photonic crystal with dye-doped nematic liquid crystal defect layer. Acta Physica Sinica, 2012, 61(11): 114211.doi:10.7498/aps.61.114211
        [9] Tang Xian-Zhu, Lu Xing-Hai, Peng Zeng-Hui, Liu Yong-Gang, Xuan Li.Theoretical approximation study on the helix structure of ferroelectric liquid crystal. Acta Physica Sinica, 2010, 59(6): 4001-4007.doi:10.7498/aps.59.4001
        [10] Ren Chang-Yu, Sun Xiu-Dong, Pei Yan-Bo.Anisotropic diffraction pattern formation from a nematic liquid crystals film induced by low-power linearly polarized beam. Acta Physica Sinica, 2009, 58(1): 298-303.doi:10.7498/aps.58.298.1
        [11] Wei Hong-Qing, Li Xiang-An, Long Zhi-Lin, Peng Jian, Zhang Ping, Zhang Zhi-Chun.Correlations between viscosity and glass-forming ability in bulk amorphous alloys. Acta Physica Sinica, 2009, 58(4): 2556-2564.doi:10.7498/aps.58.2556
        [12] Zhang Ran, He Jun, Peng Zeng-Hui, Xuan Li.Molecular dynamics simulation of the rotational viscosity and its odd-even effect of nematic liquid crystals nCB(4-n-alkyl-4′-cyanobiphenyls, n=5—8). Acta Physica Sinica, 2009, 58(8): 5560-5566.doi:10.7498/aps.58.5560
        [13] Kong Fan-Jie, Du Ji-Guang, Jiang Gang.The structure and potential energy function of PdCO molecule. Acta Physica Sinica, 2008, 57(1): 149-154.doi:10.7498/aps.57.149
        [14] Yang Ping-Bao, Cao Long-Gui, Hu Wei, Zhu Ye-Qing, Guo Qi, Yang Xiang-Bo.Interactions between strong nonlocal optical spatial solitons in nematic liquid crystals. Acta Physica Sinica, 2008, 57(1): 285-290.doi:10.7498/aps.57.285
        [15] Wang Zhen-Yu, Yang Yuan-Sheng, Tong Wen-Hui, Li Hui-Qiang, Hu Zhuang-Qi.A new model for calculating critical cooling rates of alloy systems based on viscosity calculation. Acta Physica Sinica, 2007, 56(3): 1543-1548.doi:10.7498/aps.56.1543
        [16] Long Xue-Wen, Hu Wei, Zhang Tao, Guo Qi, Lan Sheng, Gao Xi-Cun.Theoretical investigation of propagation of nonlocal spatial soliton in nematic liquid crystals. Acta Physica Sinica, 2007, 56(3): 1397-1403.doi:10.7498/aps.56.1397
        [17] Yan Shi-Ying.The molecular structure and potential energy function of the ground state of BH2 molecule. Acta Physica Sinica, 2006, 55(7): 3408-3412.doi:10.7498/aps.55.3408
        [18] Zhan Kai-Yun, Pei Yan-Bo, Hou Chun-Feng.Observation of spatial solitons in nematic liquid crystals. Acta Physica Sinica, 2006, 55(9): 4686-4690.doi:10.7498/aps.55.4686
        [19] Liu Hong, Wang Hui.Phase transition in biaxial nematic liquid crystal. Acta Physica Sinica, 2005, 54(3): 1306-1312.doi:10.7498/aps.54.1306
        [20] Xue Wei-Dong, Wang Hong-Yan, Zhu Zheng-He, Zhang Guang-Feng, Zhou Le-Xi, Chen Chang-An, Sun Ying.. Acta Physica Sinica, 2002, 51(11): 2480-2484.doi:10.7498/aps.51.2480
      Metrics
      • Abstract views:1309
      • PDF Downloads:46
      • Cited By:0
      Publishing process
      • Received Date:06 November 2023
      • Accepted Date:22 December 2023
      • Available Online:04 January 2024
      • Published Online:20 March 2024

        返回文章
        返回
          Baidu
          map