\begin{document}${\left\langle {001} \right\rangle _c}$\end{document} oriented AgNbO3 single crystals with a large size (maximum size 5 mm×4 mm×4 mm) and high quality are successfully grown by the flux method. The phase transition characteristics are studied by the X-ray diffraction, temperature dependence of dielectric data and AC impedance, polarized light microscope photos, and differential scanning calorimetry curves. The electrical and optical properties are studied by the ferroelectric response and electro-strain response, optical absorbance spectrum and photo-dielectric effect.The AgNbO3 single crystals with the M phase exhibit the same domain structure. When the structure changes from M2 to M3, the contrast of the PLM image is darkened. Correspondingly, the conductivity and dielectric loss significantly increase, which relates to the dynamic behaviors of the carriers. Interestingly, neither exothermic peak nor endothermic peak relating to the M2-M3 transition is observed. The active energy for the M3 phase AgNbO3 single crystal is ~1.24 eV. When the structure changes from orthogonal M3 to paraelectric orthogonal O, the domain structure disappears and the contrast becomes darker. The finding indicates that the anisotropy of the crystals disappears. At the same time, an obvious thermal hysteresis observed in the DSC curve reveals that the M3-O transition is first-order. At room temperature, the direct band gap of AgNbO3 single crystal is ~2.73 eV, which is slightly narrower than that of AgNbO3 ceramic. Below the critical electric field, AgNbO3 single crystal shows an electro-strain of 0.076% under Em = 130 kV/cm. The obtained electro-strain value is much higher than that of AgNbO3 ceramic under the same electric field. The relative permittivity increases from 70 to 73 under the green laser irradiation, showing an apparent photo-dielectric effect. We believe that our study can assist in the further understanding of the phase transition characteristics and physical properties in AgNbO3 single crystals."> Phase transition characteristics, electrical and optical properties of AgNbO<sub>3 </sub>crystals grown by flux method - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Niu Jia-Lin, Dong Si-Yuan, Wei Yong-Xing, Jin Chang-Qing, Nan Rui-Hua, Yang Bin
    PDF
    HTML
    Get Citation
    Metrics
    • Abstract views:1893
    • PDF Downloads:64
    • Cited By:0
    Publishing process
    • Received Date:14 June 2023
    • Accepted Date:07 October 2023
    • Available Online:27 October 2023
    • Published Online:05 February 2024

      返回文章
      返回
        Baidu
        map