Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

Qiu Peng, Liu Heng, Zhu Xiao-Li, Tian Feng, Du Meng-Chao, Qiu Hong-Yu, Chen Guan-Liang, Hu Yu-Yu, Kong De-Lin, Yang Jin, Wei Hui-Yun, Peng Ming-Zeng, Zheng Xin-He
PDF
HTML
Get Citation
  • Group III nitride semiconductors, such as GaN, AlN, and InN, are an important class of compound semiconductor material, and have attracted much attention, because of their unique physicochemical properties. These semiconductors possess excellent characteristics, such as wide direct bandgap, high breakdown field strength, high electron mobility, and good stability, and thus are called third-generation semiconductors. Their alloy materials can adjust their bandgaps by changing the type or proportion of group III elements, covering a wide wavelength range from near-ultraviolet to infrared, thereby achieving wavelength selectivity in optoelectronic devices. Atomic layer deposition (ALD) is a unique technique that produces high-quality group III nitride films at low temperatures. The ALD has become an important method of preparing group III nitrides and their alloys. The alloy composition can be easily controlled by adjusting the ALD cycle ratio. This review highlights recent work on the growth and application of group III nitride semiconductors and their alloys by using ALD. The work is summarized according to similarities so as to make it easier to understand the progress and focus of related research. Firstly, this review summarizes binary nitrides with a focus on their mechanism and application. In the section on mechanism investigation, the review categorizes and summarizes the effects of ALD precursor material, substrate, temperature, ALD type, and other conditions on film quality. This demonstrates the effects of different conditions on film growth behavior and quality. The section on application exploration primarily introduces the use of group III nitride films in various devices through ALD, analyzes the enhancing effects of group III nitrides on these devices, and explores the underlying mechanisms. Additionally, this section discusses the growth of group III nitride alloys through ALD, summarizing different deposition methods and conditions. Regarding the ALD growth of group III nitride semiconductors, there is more research on the ALD growth of AlN and GaN, and less research on InN and its alloys. Additionally, there is less research on the ALD growth of GaN for applications, as it is still in the exploratory stage, while there is more research on the ALD growth of AlN for applications. Finally, this review points out the prospects and challenges of ALD in preparation of group III nitride semiconductors and their alloys.
        Corresponding author:Zheng Xin-He,xinhezheng@ustb.edu.cn
      • Funds:Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0703700), the National Natural Science Foundation of China (Grant No. 52002021), and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-IDRY-GD22-001).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

    • 材料 金属前驱体 氮前驱体 沉积温度/ ℃ 沉积衬底 应用 ALD类型 等离子体功率/W 参考文献
      GaN TEG Ar/N2/H2(1∶3∶6) 350 Si (100) 薄膜生长 PE-ALD 60 [32]
      GaN TEG Ar/N2/H2(1∶3∶6) 350 Si (100) 薄膜生长 PE-ALD 60 [33]
      GaN TEG Ar/N2/H2(1∶3∶6) 350 c-sapphire 薄膜生长 PE-ALD 60 [34]
      GaN TEG N2/H2 200 Si (100) 薄膜生长 HCPA-ALD 300 [36]
      GaN TMG N2/H2 120—240 Si (100) 薄膜生长 HCP-ALD 50—250 [37]
      GaN TEG N2/H2 200 sapphire 薄膜生长 HCPA-ALD 300 [38]
      GaN TEG NH3/Ar 160—350 Si (100) 薄膜生长 PE-ALD 2000 [39]
      GaN TEG N2/H2 300 sapphire (0001) 薄膜生长 PE-ALD 50和 300 [40]
      GaN Ga(NMe2)3 NH3/Ar 130—250 Si (100)
      4H-SiC (0002)
      薄膜生长 PE-ALD 2800 [41]
      GaN Ga(NMe2)3 NH3/Ar 130—250 Si (100), 4H-SiC (0002) 薄膜生长 PE-ALD 2800 [42]
      GaN TEG Ar/N2/H2(1∶3∶6) 350 multilayer graphene 薄膜生长 PE-ALD 60 [43]
      GaN TEG Ar/N2/H2(1∶3∶6) 300 graphene 薄膜生长 PE-ALD 60 [44]
      GaN TEG Ar/N2/H2(1∶3∶6) ≤290 stainless steel 薄膜生长 PE-ALD 60 [45]
      GaN TEG Ar/N2/H2(1∶3∶6) 200—300 Kapton 薄膜生长 PE-ALD 60 [46]
      GaN TEG Ar/N2/H2(1∶3∶6) 260 MoS2 薄膜生长 PE-ALD 60 [47]
      GaN TEG Ar/N2/H2(1∶3∶6) 260, 320 MoS2 薄膜生长 PE-ALD 60 [48]
      GaN TEG Ar/N2/H2(1∶3∶6) 280 FTO 薄膜生长 PE-ALD 60 [49]
      GaN TEG Ar/N2/H2(1∶3∶6) 280 FTO 钙钛矿太阳能电池 PE-ALD 60 [50]
      GaN TEG Ar/N2/H2(1∶3∶6) 200—280 量子点太阳能电池 PE-ALD 60 [51]
      AlN AlCl3 NH3/Ar/H2 350 p-Si (100) 薄膜生长 PE-ALD 150 [52]
      AlN TMA Ar/N2/H2(1∶3∶6) 350—300 Si (100) 薄膜生长 PE-ALD 60 [53]
      AlN TMA Ar/N2/H2(1∶3∶6) 250 Si (100), Si (111)
      sapphire
      薄膜生长 PE-ALD 60 [54]
      AlN TMA NH3 200—300 Si, sapphire 薄膜生长 PE-ALD 2500 [55]
      AlN TMA NH3 300 GaN 薄膜生长 PE-ALD 200 [56]
      AlN TMA N2/H2 200 Si (100) 薄膜生长 PE-ALD 300 [57]
      AlN TMA Ar/N2 300 (Homemade substrates) MEMS PE-ALD 975 [58]
      AlN TMA H2plasma, NH3 325—350 SiC 薄膜生长 PE-ALD 1800 [59]
      TMA NH3 325—400 SiC T-ALD
      AlN TMA N2/H2 300 4H-SiC 薄膜生长 PE-ALD 50—300 [60]
      AlN TMA NH3(Ar) 300 Si (100), Si (111) 薄膜生长 PE-ALD 100, 200 [61]
      AlN TMA NH3 350 Si 薄膜生长 PE-ALD(ICP) 200
      600
      [62]
      PE-ALD(CCP) 200
      AlN Al(C4H9)3 N2H5Cl 200—350 薄膜生长 T-ALD [63]
      AlN TMA N2/H2 300 Si (100) 薄膜生长, 电容器 PE-ALD 300 [64]
      AlN TMA Ar/N2/H2 100—250 Si (100) 薄膜生长 HCPA-ALD 25—200 [65]
      AlN TMA Ar/N2/H2 100—250 Si (100) 薄膜生长 HCPA-ALD 25—200 [66]
      AlN TMA NH3 295—342 Si, TiN 薄膜生长 T-ALD [67]
      AlN TMA N2H4 175—350 p-Si 薄膜生长 T-ALD [68]
      AlN TMA Monomethylhydrazine(MMH) 375—475 Si (100) 薄膜生长 T-ALD [69]
      AlN 三(二甲氨基)铝 NH3 300 p-Si 薄膜生长 T-ALD [70]
      AlN TMA NH3 400 GaN/AlGaN MIS-HEMT T-ALD [71]
      AlN TMA NH3 360 GaN MIS-HEMT T-ALD [72]
      AlN TMA N2& NH3 300, 350 AlGaN HEMT PE-ALD 2800 [73]
      AlN TMA NH3 400 AlGaN HEMT T-ALD [74]
      AlN TMA N2/H2 300 p-GaN LED PE-ALD [75]
      AlN TMA N2 350 AlGaN Schottky diodes PE-ALD 2800 [76]
      AlN TMA NH3 340 GaN 异质结 T-ALD [77]
      AlN TMA NH3 300 GaN 薄膜生长, 异质结 PE-ALD 200 [78]
      AlN TMA NH3 335 c-sapphire 异质结 T-ALD [79]
      InN TMI Ar/N2 250 ± 20 sapphire 薄膜生长 PE-ALD 300 [80]
      InN TMI N2/H2 200 sapphire 薄膜生长 HCPA-ALD 300 [81]
      InN TMI NH3 240—320 Si (100) 薄膜生长 PE-ALD 2400—2800 [82]
      InN TMI N2, Ar/N2, Ar/N2/H2 120—240 Si (100) 薄膜生长 HCP-ALD 50—200 [83]
      InN TMI N2/Ar 250 GaN (0001) 薄膜生长 PE-ALD 300 [84]
      InN Tris (N, N-dimethyl-N', N''-diisopropylguanidinato)
      indium (III), Tris (N, N'-diisopropylamidinato) indium
      (III), Tris(N, N'-diisopropylformamidinato) indium (III)
      Ar/NH3 200—280 Si (100) 薄膜生长 PE-ALD 2800 [85]
      InN Tris(1,3-diisopropyltriazenide)
      indium (III)
      NH3(Ar/NH3) 200—400 Si, 4H-SiC 薄膜生长 PE-ALD 2800 [86]
      InN TMI N2 190—310 Si (100), Al2O3(0001), ZnO (0001) 薄膜生长 PE-ALD 100—200 [87]
      InN TMI N2(Ar) 150—300 glass, polyimide 薄膜生长 PE-ALD 200 [88]
      InN TMI N2 180—320 GaN (0001) 薄膜生长 PE-ALD 300 [89]
      InN TMI NH3/Ar 320 4H-SiC 薄膜生长 PE-ALD 2800 [90]
      InN TMI Ar/N2/H2(1∶3∶6) 200—300 Si (100) 薄膜生长 PE-ALD 60 [91]
      DownLoad: CSV

      材料 金属前驱体 氮前驱体 沉积温度/ ℃ 沉积衬底 应用 ALD类型 等离子体功率/W 参考文献
      InGaN TMI, TEG N2/H2, N2 200 Si, quartz 薄膜生长 HCPA-ALD 300 [95]
      InGaN Ga(III) and In(III) triazenides NH3/Ar 350 Si (100)
      4H-SiC (0001)
      薄膜生长 PE-ALD 2800 [96]
      AlGaN TMA, TMG NH3/N2/H2 200 Si (100), Si (111),c-sapphire 薄膜生长 HCPA-ALD 300 [97]
      AlGaN TMA, TMI, TMG N2/Ar 350—450 Si (100),a-sapphire, GaN/a-sapphire 薄膜生长 PE-ALD 300 [98]
      InAlN 340—300
      InGaN
      AlGaN
      InGaN
      TMG, TMA, TMI N2/H2 220—300 Si 薄膜生长 PE-ALD 280 [99]
      AlGaN TMA&TEG NH3& N2 342 p-Si (100), TiN/SiO2/Si 薄膜生长 T-ALD [100]
      AlGaN TMA, TEG NH3 335 c-GaN 异质结 ALD [101]
      AlGaN TMA. TEG NH3 335 c-GaN 异质结 T-ALD [102]
      AlGaN TEG NH3 335 ℃ GaN 异质结 T-ALD [103]
      DownLoad: CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

    • [1] Qu Zi-Han, Zhao Yang, Ma Fei, You Jing-Bi.Preparation of high-performance large-area perovskite solar cells by atomic layer deposition of metal oxide buffer layer. Acta Physica Sinica, 2024, 73(9): 098802.doi:10.7498/aps.73.20240218
      [2] Li Zhong-Xiang, Wang Shu-Ya, Huang Zi-Qiang, Wang Chen, Mu Qing.Preparation of Al2O3tunnel barrier layer in atome-level controlled Josephson junction. Acta Physica Sinica, 2022, 71(21): 218102.doi:10.7498/aps.71.20220820
      [3] Guo Qin-Min, Qin Zhi-Hui.Development and application of vapor deposition technology in atomic manufacturing. Acta Physica Sinica, 2021, 70(2): 028101.doi:10.7498/aps.70.20201436
      [4] Li Ye, Wang Xi-Xi, Wei Hui-Yun, Qiu Peng, He Ying-Feng, Song Yi-Meng, Duan Zhang, Shen Cheng-Tao, Peng Ming-Zeng, Zheng Xin-He.Enhancement of interface transportation for quantum dot solar cells using ultrathin InN by atomic layer deposition. Acta Physica Sinica, 2021, 70(18): 187702.doi:10.7498/aps.70.20210554
      [5] Zhang Yu-He, Niu Dong-Mei, Lü Lu, Xie Hai-Peng, Zhu Meng-Long, Zhang Hong, Liu Peng, Cao Ning-Tong, Gao Yong-Li.Adsorption, film growth, and electronic structures of 2,7-dioctyl[1]benzothieno-[3,2-b][1]benzothiophene (C8-BTBT) on Cu (100). Acta Physica Sinica, 2016, 65(15): 157901.doi:10.7498/aps.65.157901
      [6] Li Yong, Li Hui-Qi, Xia Yang, Liu Bang-Wu.Study on atomic layer deposition preparation of core-shell structured nanometer materials. Acta Physica Sinica, 2013, 62(19): 198102.doi:10.7498/aps.62.198102
      [7] Yan Da-Wei, Li Li-Sha, Jiao Jin-Ping, Huang Hong-Juan, Ren Jian, Gu Xiao-Feng.Capacitance characteristics of atomic layer deposited Al2O3/n-GaN MOS structure. Acta Physica Sinica, 2013, 62(19): 197203.doi:10.7498/aps.62.197203
      [8] Dong Ya-Bin, Xia Yang, Li Chao-Bo, Lu Wei-Er, Rao Zhi-Peng, Zhang Yang, Zhang Xiang, Ye Tian-Chun.Investigation on the relationship between the properties of atomic layer deposition ZnO film and the dose of precursor. Acta Physica Sinica, 2013, 62(14): 147306.doi:10.7498/aps.62.147306
      [9] Bao Shan-Yong, Dong Wu-Jun, Xu Xing, Luan Tian-Bao, Li Jie, Zhang Qing-Yu.Influence of oxygen partial pressure on the crystal quality and optical properties of Mg-doped ZnO films. Acta Physica Sinica, 2011, 60(3): 036804.doi:10.7498/aps.60.036804
      [10] Sun Xuan, Huang Xu, Wang Ya-Zhou, Feng Qing-Rong.Properties of MgB2 ultra-thin films grown by hybrid physical-chemical vapor deposition. Acta Physica Sinica, 2011, 60(8): 087401.doi:10.7498/aps.60.087401
      [11] Ren Shu-Yang, Ren Zhong-Ming, Ren Wei-Li.Influence of grain size on the magnetic orientation growth of films prepared by vapor deposition in high magnetic field. Acta Physica Sinica, 2011, 60(1): 016104.doi:10.7498/aps.60.016104
      [12] Lu Hang-Jun, Wu Feng-Min.Simulation of 3-dimensional thin film growth on heterogeneous substrate. Acta Physica Sinica, 2006, 55(1): 424-429.doi:10.7498/aps.55.424
      [13] Li Yong, Sun Cheng-Wei, Liu Zhi-Wen, Zhang Qing-Yu.Study of ZnO film growth by reactive magnetron sputtering using plasma emission spectra. Acta Physica Sinica, 2006, 55(8): 4232-4237.doi:10.7498/aps.55.4232
      [14] Yang Chun, Yu Yi, Li Yan-Rong, Liu Yong-Hua.Temperature effect on the adsorption, diffusion and initial growth mode of ZnO/Al2O3(0001) from first principles. Acta Physica Sinica, 2005, 54(12): 5907-5913.doi:10.7498/aps.54.5907
      [15] Xie Guo-Feng, Wang De-Wu, Ying Chun-Tong.Simulation of two-dimensional thin film growth by modified DLA method. Acta Physica Sinica, 2005, 54(5): 2212-2219.doi:10.7498/aps.54.2212
      [16] Zheng Xiao-Ping, Zhang Pei-Feng, Liu Jun, He De-Yan, Ma Jian-Tai.Computer simulation of thin-film epitaxy growth. Acta Physica Sinica, 2004, 53(8): 2687-2693.doi:10.7498/aps.53.2687
      [17] Wang Xiao-Ping, Xie Feng, Shi Qin-Wei, Zhao Te-Xiu.The effect of lattice mismatch on the nucleation process of heteroepitaxial growth of ultrathin film. Acta Physica Sinica, 2004, 53(8): 2699-2704.doi:10.7498/aps.53.2699
      [18] Qian Chang-Ji, Gao Guo-Liang, Li Hong, Ye Gao-Xiang.. Acta Physica Sinica, 2002, 51(9): 1960-1964.doi:10.7498/aps.51.1960
      [19] CHEN MIN, WEI HE-LIN, LIU ZU-LI, YAO KAI-LUN.EFFECT OF LOW-ENERGY DEPOSITION PARTICLES ON INITIAL STAGE OF THIN FILM. Acta Physica Sinica, 2001, 50(12): 2446-2451.doi:10.7498/aps.50.2446
      [20] YANG NING, CHEN GUANG-HUA, ZHANG YANG, GONG WEI-BIN, ZHU HE-SUN.MONTE CARLO SIMULATION OF THIN FILMS GROWTH. Acta Physica Sinica, 2000, 49(11): 2225-2229.doi:10.7498/aps.49.2225
    Metrics
    • Abstract views:3557
    • PDF Downloads:127
    • Cited By:0
    Publishing process
    • Received Date:23 May 2023
    • Accepted Date:27 December 2023
    • Available Online:05 January 2024
    • Published Online:05 February 2024

      返回文章
      返回
        Baidu
        map