\begin{document}$ {\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}^{\prime} $\end{document} are found to be RCaS= 2.564 Å, RSH= 1.357 Å, andCaSH= 91.0°. Additionally, the equilibrium geometries of three excited states are also obtained. The \begin{document}$ {\tilde{{\mathrm{B}}}}^{2}{{\mathrm{A}}}^{\prime\prime} $\end{document} state has a similar equilibrium structure to the ground state, while the \begin{document}$ {\tilde{{\mathrm{A}}}}^{2}{{\mathrm{A}}}^{\prime} $\end{document} and \begin{document}$ {\tilde{{\mathrm{C}}}}^{2}{{\mathrm{A}}}^{\prime} $\end{document} states exhibit significant conformer distortions. Specifically, the CaS bond of the \begin{document}$ {\tilde{{\mathrm{A}}}}^{2}{{\mathrm{A}}}^{\prime} $\end{document} state and \begin{document}$ {\tilde{{\mathrm{C}}}}^{2}{{\mathrm{A}}}^{\prime} $\end{document} state tend to contract, and the CaSH angel bends by 5° relative to the ground state. The vertical excitation energy from the ground state to \begin{document}$ {\tilde{{\mathrm{A}}}}^{2}{{\mathrm{A}}}^{\prime} $\end{document}, \begin{document}$ {\tilde{{\mathrm{B}}}}^{2}{{\mathrm{A}}}^{\prime\prime} $\end{document} and \begin{document}$ {\tilde{{\mathrm{C}}}}^{2}{{\mathrm{A}}}^{\prime} $\end{document} are of 1.898, 1.945 and 1.966 eV, respectively, which are in good agreement with the previous experimental results. Moreover, the potential energy surfaces of the four lowest electronic states of CaSH are calculated by EA-EOM-CCSD with 3ζ level of basis sets. The nuclear equations of motion are solved to obtain the vibrational frequencies of the CaS bond stretching and CaSH bending. The vibrational frequencies of the (0,1,0) mode and the CaS stretching frequency of four states are 316 cm–1, 315 cm–1, 331 cm–1 and 325 cm–1, which are in close agreement with the available experimental results. The frequencies of the CaSH bending mode are presented for the first time, with the values of 357 cm–1, 396 cm–1, 384 cm–1, 411 cm–1 for the \begin{document}$ {\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}^{\prime} $\end{document}, \begin{document}$ {\tilde{{\mathrm{A}}}}^{2}{{\mathrm{A}}}^{\prime} $\end{document}, \begin{document}$ {\tilde{{\mathrm{B}}}}^{2}{{\mathrm{A}}}^{\prime\prime} $\end{document} and \begin{document}$ {\tilde{{\mathrm{C}}}}^{2}{{\mathrm{A}}}^{\prime} $\end{document} states, respectively. Theoretical calculations give the Frank-Condon factors of 0.9268, 0.9958 and 0.9248 for the \begin{document}$ {\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}^{\prime} ({\mathrm{0,0}},0) $\end{document} to \begin{document}$ {\tilde{{\mathrm{A}}}}^{2}{{\mathrm{A}}}^{\prime} ({\mathrm{0,0}},0) $\end{document}, \begin{document}$ {\tilde{{\mathrm{B}}}}^{2}{{\mathrm{A}}}^{{{\prime} }{{\prime} }}({\mathrm{0,0}},0) $\end{document} and \begin{document}$ {\tilde{{\mathrm{C}}}}^{2}{{\mathrm{A}}}^{\prime} ({\mathrm{0,0}},0) $\end{document} transitions. All three excited states are the bright states with considerable oscillator strength relative to the ground state. Based on the Frank-Condon factor and lifetime of excited states, the \begin{document}$ {{\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}^{\prime} ({\mathrm{0,0}},0)\to \tilde{{\mathrm{B}}}}^{2}{{\mathrm{A}}}^{{{\prime} }{{\prime} }}({\mathrm{0,0}},0) $\end{document} transition is regarded as the main cooling cycle for the CaSH molecule. The corresponding pump light wavelength is 678 nm. By exciting the vibrational excited states (0,1,0) and (0,0,1) of the \begin{document}$ {\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}^{\prime} $\end{document} state to \begin{document}$ {\tilde{{\mathrm{A}}}}^{2}{{\mathrm{A}}}^{\prime} ({\mathrm{0,0}},0) $\end{document} using lasers at 666 nm and 668 nm, respectively, the optical cooling branch ratio of CaSH is expected to exceed 0.9998."> - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

Feng Zhuo, Suo Bing-Bing, Han Hui-Xian, Li An-Yang
PDF
HTML
Get Citation
Metrics
  • Abstract views:1700
  • PDF Downloads:56
  • Cited By:0
Publishing process
  • Received Date:07 May 2023
  • Accepted Date:16 September 2023
  • Available Online:12 October 2023
  • Published Online:20 January 2024

    返回文章
    返回
      Baidu
      map