In this work, a one-dimensional lattice theory scheme is proposed based on superconducting microwave cavity, which includes two different types of microwave cavity unit cells. The coupling between the unit cells is controlled by flux qubits to simulate and study their topological insulator characteristics. Specifically, by mapping the counter-rotating wave terms into the p-wave superconducting pairing term, a one-dimensional superconducting microwave cavity lattice scheme with a p-wave superconducting pairing term is obtained. It is found that the p-wave superconducting pairing term can modulate the topological quantum state of the system, allowing the topological quantum information transmission channels with four edge states to be created. In addition, when the p-wave superconducting pairing term interacts with the nearest-neighbor, the energy band undergoes fluctuations, thus inducing new energy bands to be generated, but the degeneracy of the edge states remains stable, which can realize the multiple topological quantum state transmission paths. However, when its regulation exceeds the threshold, the energy gap of the system will close, causing the edge states to annihilate in a new energy band. Furthermore, with defects considered to exist in the system, when the strength of the defect is small, the edge state produces small fluctuations, but it can be clearly distinguished, showing its robustness. When the strength of the defect exceeds the threshold, the edge state and energy band will cause irregular fluctuations, allowing the edge state to integrate into an energy band. Our research results have important theoretical value and practical significance, and can be applied to quantum optics and quantum information processing in the future.