Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

Sun Hui-Ying, Qian Xiang-Li, Chen Tian-Lu, Danzengluobu, Feng You-Liang, Gao Qi, Gou Quan-Bu, Guo Yi-Qing, Hu Hong-Bo, Kang Ming-Ming, Li Hai-Jin, Liu Cheng, Liu Mao-Yuan, Liu Wei, Qiao Bing-Qiang, Wang Xu, Wang Zhen, Xin Guang-Guang, Yao Yu-Hua, Yuan Qiang, Zhang Yi
PDF
HTML
Get Citation
  • High altitude detection of astronomical radiation (HADAR) is an innovative array of atmospheric Cherenkov telescopes that employs pure water as its medium. By utilizing large-aperture hemispherical lenses, HADAR can capture atmospheric Cherenkov light, enabling the detection of gamma rays and cosmic rays in the energy range of 10 GeV to 10 TeV. Compared to traditional Imaging Atmospheric Cherenkov telescopes, HADAR offers distinct advantages such as a low energy threshold, high sensitivity, and a wide field of view. The telescope mainly consists of a hemispherical lens with a diameter of 5 m acting as a Cherenkov light collector, a cylindrical metal tank with a 4 m radius and 7 m height, and an imaging system at the bottom of the tank. The sky region covered by HADAR is much larger than the current generation of Imaging Atmospheric Cherenkov Telescopes. The field of view of HADAR can reach up to 60 degrees. Its continuous scanning capability allows for comprehensive observations of gamma-ray sources throughout the entire celestial sphere, making it an ideal instrument for studying transient and variable sources. In this study, the observational capabilities of HADAR are thoroughly investigated using the latest 4FGL-DR3 and 4LAC-DR3 gamma-ray source catalogs from Fermi-LAT. For extragalactic sources, the energy spectra in the high energy range have been extrapolated to the very high energy range, taking into account the absorption effect caused by extragalactic background light. By comparing the extrapolated results with existing VHE experimental data, the feasibility of this extrapolation method has been demonstrated. Through simulated analyses of the significance of these sources, it is anticipated that HADAR will detect a total of 93 gamma-ray sources with a significance exceeding 5 standard deviations during one year of operation. These sources comprise 45 galactic sources, 39 extragalactic sources, 3 sources of unknown type, and 6 unassociated sources.
        Corresponding author:Qian Xiang-Li,qianxl@sdmu.edu.cn; Guo Yi-Qing,guoyq@ihep.ac.cn;
      • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 12263005, 12005120, 12147218, U1831208, U2031110) and the Key Laboratory of Cosmic Ray of the Ministry of Education of China, Tibet University (Grant No. KLCR-202201)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

    • Experiment Hemisphere/(N, S) FOV/sr Energy threshold Angular resolution/(°) Sensitivity/Crab Ref.
      Fermi-LAT 2FHL space 2.7 10 GeV–2 TeV 0.1°(30 GeV) 3%–4% [24]
      LHAASO-WCDA N 1.5 100 GeV–30 TeV 0.4°(2 TeV) < 10% [29]
      HAWC N 1.5 100 sGeV–10 sTeV ~0.5° 5%–10% [9]
      H.E.S.S. S 0.006 30 GeV–100 TeV 0.08° 0.4%–2.0% [7]
      MAGIC N 0.003 50 GeV–10 TeV ~0.1° ~0.7% [25]
      CTA N, S 0.0048–0.015 20 GeV–300 TeV 0.07°(1 TeV) 0.2%–0.4% [4]
      HADAR N 0.84 10 GeV–10 TeV 0.4°(100 GeV) 1.3%–2.4% [22]
      DownLoad: CSV

      4FGL Name Counterpart Type Class Redshift Model E0/GeV F0/(TeV–1·cm–2·s–1) Γ β
      J0222.6+4301 3C 66A BLL ISP 0.444 LP 1.197 1.03 × 10–5 1.89 0.04
      J1221.3+3010 1ES 1218+304 BLL EHSP 0.184 PL 4.501 1.83 × 10–7 1.71
      J1427.0+2348 PKS 1424+240 BLL HSP 0.604 LP 1.205 7.03 × 10–6 1.71 0.06
      J1555.7+1111 PG 1553+113 BLL HSP 0.360 LP 1.802 3.84 × 10–6 1.54 0.07
      DownLoad: CSV

      4FGL-DR3 source classes Number of sources in 4FGL-DR3 Number of sources in HADAR FOV Expected to be observed by HADAR in 1 a Expected to be observed by HADAR in 5 a
      Young / Millisecond pulsars 292 106 34 52
      PWNe, SNR 63 22 10 13
      SNR / PWNe 114 26 0 1
      Globular cluster 35 5 0 0
      Star-forming region 5 2 1 1
      High-mass Binary, Low-mass Binary, Binary, Nova 30 6 0 0
      BL Lacs 1458 492 34 66
      FSRQs 792 376 2 5
      Blazar candidate of uncertain type 1493 88 0 2
      Nonblazar AGN (RDG, AGN, SSRQ, CSS, NLSY1, SEY) 71 36 3 8
      Starburst galaxy 8 3 0 0
      Normal galaxy 6 3 0 0
      Unkown 134 48 3 7
      Unassociated 2157 592 6 25
      Total 6658 1805 93 180
      DownLoad: CSV

      4FGL name Counterpart R.A. Dec. Type Redshift Model E0/GeV F0/(TeV–1·cm–2·s–1) Γ β Time/h S/σ
      J0112.1+2245 S2 0109+22 18.03 22.75 BLL 0.265 LP 0.769 1.46 × 10–5 1.99 0.060 277.8 9.05
      J0211.2+1051 MG1J021114+1051 32.81 10.86 BLL 0.200 LP 0.922 7.51 × 10–6 2.02 0.042 196.3 6.47
      J0222.6+4302 3C 66A 35.67 43.04 BLL 0.444 LP 1.246 8.40 × 10–6 1.89 0.046 264.2 17.9
      J0319.8+4130 NGC 1275 49.96 41.51 RDG 0.018 LP 0.918 4.36 × 10–5 2.05 0.069 271.9 54.6
      J0521.7+2112 TXS 0518+211 80.44 21.21 bll 0.108 LP 1.541 4.64 × 10–6 1.86 0.045 271.0 50.2
      J0620.7+2643 RX J0620.6+2644 95.18 26.73 bll 0.134 PL 17.415 1.22 × 10–9 1.55 290.3 5.1
      J0648.7+1516 RX J0648.7+1516 102.19 15.28 bll 0.179 LP 3.248 1.22 × 10–7 1.60 0.056 234.3 10.9
      J0650.7+2503 1ES 0647+250 102.7 25.05 bll 0.203 LP 2.067 8.44 × 10–7 1.65 0.041 286.0 32.9
      J0738.1+1742 PKS 0735+17 114.54 17.71 bll 0.424 LP 1.623 2.25 × 10–6 1.97 0.067 251.3 5.2
      J0809.8+5218 1ES 0806+524 122.46 52.31 BLL 0.138 LP 1.342 1.91 × 10–6 1.83 0.023 193.9 15.1
      J0915.9+2933 Ton 0396 138.99 29.55 bll 0.190 LP 1.390 9.28 × 10–7 1.74 0.081 294.7 7.4
      J1015.0+4926 1H 1013+498 153.77 49.43 bll 0.212 LP 1.044 6.00 × 10–6 1.75 0.044 220.0 27.9
      J1058.6+5627 TXS 1055+567 164.67 56.46 BLL 0.143 LP 1.102 2.38 × 10–6 1.86 0.050 149.4 6.1
      J1104.4+3812 Mkn 421 166.12 38.21 BLL 0.030 PLEC 1.258 1.79 × 10–5 1.74 284.9 519.6
      J1117.0+2013 RBS 0958 169.27 20.23 bll 0.139 PL 1.964 3.12 × 10–7 1.95 266.1 5.0
      J1120.8+4212 RBS 0970 170.20 42.20 bll 0.124 LP 2.416 2.11 × 10–7 1.55 0.046 268.6 23.9
      J1150.6+4154 RBS 1040 177.66 41.91 bll 0.320 LP 1.949 4.71 × 10–7 1.55 0.135 270.0 7.2
      J1217.9+3007 B2 1215+30 184.48 30.12 BLL 0.130 LP 1.248 5.77 × 10–6 1.87 0.043 295.1 37.7
      J1221.3+3010 PG 1218+304 185.34 30.17 bll 0.184 LP 2.590 5.27 × 10–7 1.65 0.029 295.2 37.4
      J1221.5+2814 W Comae 185.38 28.24 bll 0.102 LP 0.781 6.00 × 10–6 2.11 0.024 293.1 5.5
      J1230.2+2517 ON 246 187.56 25.30 bll 0.135 LP 0.800 6.66 × 10–6 2.02 0.056 286.7 5.8
      J1230.8+1223 M 87 187.71 12.39 rdg 0.004 LP 1.124 1.30 × 10–6 2.00 0.036 210.5 5.3
      J1417.9+2543 1E 1415.6+2557 214.49 25.72 bll 0.237 LP 8.155 6.13 × 10–9 1.28 0.138 287.9 5.1
      J1427.0+2348 PKS 1424+240 216.76 23.80 BLL 0.604 LP 1.254 5.70 × 10–6 1.71 0.057 281.8 21.7
      J1428.5+4240 H 1426+428 217.13 42.68 bll 0.129 PL 5.135 2.69 × 10–8 1.65 266.1 10.3
      J1449.5+2746 B2 1447+27 222.40 27.77 rdg 0.031 PL 14.614 5.37 × 10–10 1.46 292.4 6.8
      J1555.7+1111 PG 1553+113 238.93 11.19 BLL 0.360 LP 3.802 1.16 × 10–6 1.57 0.095 199.5 56.4
      J1653.8+3945 Mkn 501 253.47 39.76 BLL 0.033 LP 1.508 3.78 × 10–6 1.75 0.018 279.5 125.1
      J1725.0+1152 1H 1720+117 261.27 11.87 bll 0.180 LP 2.216 7.55 × 10–7 1.76 0.056 205.9 14.5
      J1728.3+5013 I Zw 187 262.08 50.23 bll 0.055 PL 2.983 1.82 × 10–7 1.79 213.2 21.1
      J1838.8+4802 GB6J1838+4802 279.71 48.04 bll 0.300 LP 1.631 8.39 × 10–7 1.78 0.040 231.3 6.7
      J1904.1+3627 MG2J190411+3627 286.03 36.45 bll 0.078 PL 5.074 2.01 × 10–8 1.80 289.7 5.8
      J2116.2+3339 B2 2114+33 319.06 33.66 bll 0.350 LP 1.653 1.10 × 10–6 1.75 0.095 294.4 7.1
      J2202.7+4216 BL Lac 330.69 42.28 BLL 0.069 LP 0.871 4.07 × 10–5 2.12 0.059 268.2 27.4
      J2232.6+1143 CTA 102 338.15 11.73 FSRQ 1.037 PLEC 1.082 4.34 × 10–5 2.27 204.5 5.9
      J2250.0+3825 B3 2247+381 342.51 38.42 bll 0.119 PL 5.338 2.55 × 10–8 1.74 284.2 7.9
      J2253.9+1609 3C 454.3 343.50 16.15 FSRQ 0.859 PLEC 0.892 1.32 × 10–4 2.38 240.7 10.9
      J2323.8+4210 1ES 2321+419 350.97 42.18 bll 0.059 LP 1.857 5.31 × 10–7 1.80 0.068 268.7 11.0
      J2347.0+5141 1ES 2344+514 356.77 51.70 bll 0.044 LP 1.911 7.15 × 10–7 1.74 0.039 199.8 29.2
      DownLoad: CSV

      4FGL Name Counterpart R.A. Dec. Type Model $ E_0 $/GeV F0/(TeV–1·cm–2·s–1) Γ β Time/h S/σ
      J0030.4+0451 PSR J0030+0451 7.61 4.86 MSP PLEC 1.360 7.36 × 10–6 2.08 130.1 40.6
      J0102.8+4839 PSR J0102+4839 15.71 48.66 MSP PLEC 1.378 1.42 × 10–6 2.18 226.4 6.0
      J0106.4+4855 PSR J0106+4855 16.61 48.93 PSR PLEC 1.578 1.66 × 10–6 2.11 224.2 14.2
      J0218.1+4232 PSR J0218+4232 34.53 42.55 MSP PLEC 0.820 1.20 × 10–5 2.35 266.8 6.2
      J0220.1+1155 35.04 11.92 PL 16.622 3.98 × 10–10 1.57 206.2 5.6
      J0340.3+4130 PSR J0340+4130 55.10 41.51 MSP PLEC 1.659 1.38 × 10–6 2.03 271.9 24.6
      J0357.8+3204 PSR J0357+3205 59.46 32.08 PSR PLEC 1.104 1.26 × 10–5 2.30 295.5 19.3
      J0425.6+5522e SNR G150.3+04.5 66.42 55.37 SNR LP 7.240 1.19 × 10–7 1.64 0.047 161.8 123.6
      J0534.5+2201i Crab Nebula 83.63 22.02 PWN LP 10.000 5.50 × 10–7 1.75 0.080 274.7 639.6
      J0540.3+2756e Sim 147 85.10 27.94 SNR LP 1.192 5.50 × 10–6 2.07 0.081 292.7 11.1
      J0554.1+3107 PSR J0554+3107 88.55 31.12 PSR PLEC 1.066 4.06 × 10–6 2.34 295.5 5.1
      J0605.1+3757 PSR J0605+3757 91.28 37.96 MSP PLEC 1.507 7.88 × 10–7 2.18 285.7 5.3
      J0617.2+2234e IC 443 94.31 22.58 SNR LP 4.551 2.58 × 10–6 2.28 0.123 277.1 37.6
      J0620.9+2201 95.23 22.02 PL 20.913 6.45 × 10–10 1.61 274.7 5.7
      J0631.5+1036 PSR J0631+1036 97.88 10.60 PSR PLEC 1.540 2.52 × 10–6 2.20 193.8 11.1
      J0631.8+0645 PSR J0631+0646 97.96 6.76 PSR PLEC 2.258 7.60 × 10–7 2.22 152.9 5.9
      J0633.7+0632 PSR J0633+0632 98.44 6.54 PSR PLEC 1.527 8.13 × 10–6 2.22 150.4 26.3
      J0633.9+1746 PSR J0633+1746 98.48 17.77 PSR PLEC 1.670 3.19 × 10–4 2.10 251.7 575.7
      J0650.6+2055 NVSS J065035+205556 102.66 20.93 unk LP 3.643 4.42 × 10–8 1.63 0.096 269.6 9.5
      J0751.2+1808 PSR J0751+1807 117.80 18.14 MSP PLEC 1.643 9.45 × 10–7 2.06 254.1 13.1
      J1312.7+0050 PSR J1312+0051 198.19 0.84 MSP PLEC 1.301 2.01 × 10–6 2.15 76.3 5.7
      J1554.2+2008 238.55 20.15 PL 4.619 1.14 × 10–8 1.82 265.6 5.0
      J1816.5+4510 PSR J1816+4510 274.15 45.17 MSP PLEC 1.171 1.48 × 10–6 2.14 251.6 6.1
      J1836.2+5925 PSR J1836+5925 279.06 59.43 PSR PLEC 1.428 6.64 × 10–5 2.07 112.6 388.8
      J1846.3+0919 PSR J1846+0919 281.60 9.33 PSR PLEC 1.458 3.78 × 10–6 2.19 181.0 14.9
      J1854.5+2050 283.64 20.84 PL 103.233 2.68 × 10–11 1.01 269.2 34.8
      J1857.7+0246e HESS J1857+026 284.45 2.77 PWN PL 6.063 2.25 × 10–7 2.13 103.1 19.5
      J1907.9+0602 PSR J1907+0602 286.98 6.04 PSR PLEC 1.898 1.39 × 10–5 2.37 144.4 31.3
      J1910.8+2856 NVSS J191052+285621 287.72 28.94 unk PL 7.243 6.08 × 10–9 1.80 294.1 7.1
      J1911.0+0905 W 49B 287.76 9.09 snr LP 4.552 7.74 × 10–7 2.28 0.112 178.6 8.5
      J1918.0+0331 NVSS J191803+033032 289.51 3.52 unk PL 12.647 2.39 × 10–9 1.72 113.0 6.2
      J1923.2+1408e W 51C 290.82 14.14 SNR LP 2.768 5.08 × 10–6 2.21 0.109 225.4 25.9
      J1924.3+1628 291.10 16.48 PL 22.893 7.99 × 10–10 1.76 243.1 7.7
      J1952.9+3252 PSR J1952+3252 298.25 32.88 PSR PLEC 1.618 9.92 × 10–6 2.29 295.1 39.3
      J1954.3+2836 PSR J1954+2836 298.59 28.60 PSR PLEC 1.519 8.08 × 10–6 2.32 293.7 23.1
      J1958.7+2846 PSR J1958+2846 299.68 28.77 PSR PLEC 1.356 1.13 × 10–5 2.35 293.9 21.1
      J2017.4+0602 PSR J2017+0603 304.35 6.05 MSP PLEC 1.800 2.20 × 10–6 1.98 144.6 43.2
      J2017.9+3625 PSR J2017+3625 304.49 36.43 PSR PLEC 1.467 6.99 × 10–6 2.53 289.8 5.7
      J2021.0+4031e gamma Cygni 305.27 40.52 SNR LP 7.758 2.07 × 10–7 1.88 0.060 276.4 95.9
      J2021.1+3651 PSR J2021+3651 305.28 36.86 PSR PLEC 1.842 2.62 × 10–5 2.32 288.8 114.0
      J2028.3+3331 PSR J2028+3332 307.08 33.53 PSR PLEC 1.467 6.57 × 10–6 2.32 294.6 17.5
      J2028.6+4110e Cygnus X 307.17 41.17 SFR LP 2.036 2.90 × 10–5 2.04 0.033 273.5 368.3
      J2030.0+3641 PSR J2030+3641 307.51 36.69 PSR PLEC 1.650 3.92 × 10–6 2.33 289.2 12.6
      J2030.9+4416 PSR J2030+4415 307.73 44.27 PSR PLEC 1.284 6.77 × 10–6 2.47 257.2 5.4
      J2032.2+4127 PSR J2032+4127 308.06 41.46 PSR PLEC 2.918 3.31 × 10–6 2.26 272.2 47.2
      J2035.0+3632 PSR J2034+3632 308.76 36.54 MSP PLEC 2.456 5.99 × 10–7 2.17 289.5 11.3
      J2043.3+1711 PSR J2043+1711 310.84 17.19 MSP PLEC 1.222 3.47 × 10–6 2.10 247.9 20.9
      J2055.8+2540 PSR J2055+2539 313.96 25.67 PSR PLEC 1.279 8.39 × 10–6 2.18 287.7 26.6
      J2111.4+4606 PSR J2111+4606 317.86 46.10 PSR PLEC 1.305 4.84 × 10–6 2.26 245.4 11.9
      J2214.6+3000 PSR J2214+3000 333.67 30.01 MSP PLEC 1.090 5.97 × 10–6 2.06 295.1 28.8
      J2301.9+5855e CTB 109 345.49 58.92 SNR LP 3.461 1.57 × 10–7 1.91 0.054 119.2 6.8
      J2302.7+4443 PSR J2302+4442 345.69 44.72 MSP PLEC 2.049 2.04 × 10–6 2.02 254.5 55.8
      J2304.0+5406e 346.01 54.11 LP 14.034 1.58 × 10–8 1.76 0.127 175.6 18.0
      J2323.4+5849 Cas A 350.86 58.82 snr LP 2.232 1.38 × 10–6 1.87 0.076 120.5 20.9
      DownLoad: CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

    • [1] Qian Xiang-Li, Sun Hui-Ying, Chen Tian-Lu, Danzengluobu, Feng You-Liang, Gao Qi, Gou Quan-Bu, Guo Yi-Qing, Hu Hong-Bo, Kang Ming-Ming, Li Hai-Jin, Liu Cheng, Liu Mao-Yuan, Liu Wei, Qiao Bing-Qiang, Wang Xu, Wang Zhen, Xin Guang-Guang, Yao Yu-Hua, Yuan Qiang, Zhang Yi.Prospective study on observations of gamma-ray emission from active galactic nuclei using the HADAR experiment. Acta Physica Sinica, 2023, 72(4): 049501.doi:10.7498/aps.72.20221976
      [2] Xiong Jun, An Hong-Hai, Wang Chen, Zhang Zhen-Chi, Jiao Jin-Long, Lei An-Le, Wang Rui-Rong, Hu Guang-Yue, Wang Wei, Sun Jin-Ren.Gamma-ray generation optimized by long and short pulses jointly driving double-layer target. Acta Physica Sinica, 2022, 71(21): 215201.doi:10.7498/aps.71.20212042
      [3] Ren Jie, Ruan Xi-Chao, Chen Yong-Hao, Jiang Wei, Bao Jie, Luan Guang-Yuan, Zhang Qi-Wei, Huang Han-Xiong, Wang Zhao-Hui, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Gu Min-Hao, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng.In-beam γ-rays of back-streaming white neutron source at China Spallation Neutron Source. Acta Physica Sinica, 2020, 69(17): 172901.doi:10.7498/aps.69.20200718
      [4] Qiang Peng-Fei, Sheng Li-Zhi, Li Lin-Sen, Yan Yong-Qing, Liu Zhe, Zhou Xiao-Hong.Optical design of X-ray focusing telescope. Acta Physica Sinica, 2019, 68(16): 160702.doi:10.7498/aps.68.20190709
      [5] Wang Rui-Rong, An Hong-Hai, Xiong Jun, Xie Zhi-Yong, Wang Wei.X-ray source with quasi-monochromatic parallel beam. Acta Physica Sinica, 2018, 67(24): 240701.doi:10.7498/aps.67.20180861
      [6] Wang Yan, Liu Xin, Huang Wan-Xia, Yi Ming-Hao, Guo Jin-Chuan, Zhu Pei-Ping.. Acta Physica Sinica, 2017, 66(8): 089901.doi:10.7498/aps.66.089901
      [7] Zhu-Yue, Zhang Zi-Liang, Yang Yan-Ji, Xue Rong-Feng, Cui Wei-Wei, Lu Bo, Wang Juan, Chen Tian-Xiang, Wang Yu-Sa, Li Wei, Han Da-Wei, Huo Jia, Hu Wei, Li Mao-Shun, Zhang Yi, Zhu Yu-Xuan, Liu Miao, Zhao Xiao-Fan, Chen Yong.Quantum efficiency calibration for low energy detector in hard X-ray modulation telescope satellite. Acta Physica Sinica, 2017, 66(11): 112901.doi:10.7498/aps.66.112901
      [8] Mou Huan, Li Bao-Quan, Cao Yang.Transmission-type miniature micro-beam modulated X-ray source based on space application. Acta Physica Sinica, 2016, 65(14): 140703.doi:10.7498/aps.65.140703
      [9] Yan Zhao-Jun, Chen Xin-Yang, Zheng Li-Xin, Ding Yuan-Yuan, Zhu Neng-Hong.Zero co-phasing reference calibration method based on dispersed interferogram for segmented mirror telescope. Acta Physica Sinica, 2016, 65(19): 199501.doi:10.7498/aps.65.199501
      [10] Liu Xin, Yi Ming-Hao, Guo Jin-Chuan.Line focal X-ray source imaging. Acta Physica Sinica, 2016, 65(21): 219501.doi:10.7498/aps.65.219501
      [11] Yu Shu-Hai, Dong Lei, Liu Xin-Yue, Ling Jian-Yong.Analysis on reconstruction of virtual images of Fourier telescopy. Acta Physica Sinica, 2015, 64(18): 184205.doi:10.7498/aps.64.184205
      [12] Yan Zhao-Jun, Chen Xin-Yang, Yang Peng-Qian, Zhou Dan, Zheng Li-Xin, Zhu Neng-Hong.Co-phasing detecting method based on grating dispersed fringe for Fizeau optical interferometric telescope. Acta Physica Sinica, 2015, 64(14): 149501.doi:10.7498/aps.64.149501
      [13] Liao Hong-Yu, Ma Xiao-Yu, Guo You-Ming, Rao Chang-Hui, Wei Kai.Analysis of tracking error of telescope based on AR-search-iteration algorithm. Acta Physica Sinica, 2014, 63(17): 179501.doi:10.7498/aps.63.179501
      [14] Ou Jian-Wen, Zhang Hao-Jing, Zheng Yong-Gang, Zhang Xiong.Chaotic characteristics of blazar object S5 0716+714. Acta Physica Sinica, 2014, 63(4): 049801.doi:10.7498/aps.63.049801
      [15] Huang Kai, Yan Wen-Chao, Li Ming-Hua, Tao Meng-Ze, Chen Yan-Ping, Chen Jie, Yuan Xiao-Hui, Zhao Jia-Rui, Ma Yong, Li Da-Zhang, Gao Jie, Chen Li-Ming, Zhang Jie.X-ray source produced by laser solid target interaction at kHz repetition rate. Acta Physica Sinica, 2013, 62(20): 205204.doi:10.7498/aps.62.205204
      [16] Wang Jian, Zhao Zong-Qing, Cai Da-Feng, Huang Wen-Zhong, He Ying-Ling, Gu Yu-Qiu.Penumbral imaging of Kα radiation source. Acta Physica Sinica, 2009, 58(10): 7074-7078.doi:10.7498/aps.58.7074
      [17] Xu Guang, Qian Lie-Jia, Wang Tao, Zhu He-Yuan, Fan Dian-Yuan.Time telescope for the expanding of ultrashort pulses. Acta Physica Sinica, 2004, 53(1): 93-98.doi:10.7498/aps.53.93
      [18] SUN KE-XU, YI RONG-QING, YANG JIA-MIN, WANG HONG-BIN, MA HONG-LIANG, CHEN ZHENG-LIN, HUANG TIAN-XUAN, CUI YAN-LI, ZHENG ZHI-JIAN, TANG DAO-YUAN, DING YONG-KUN, WEN SHU-HUAI, JIANG WEN-MIAN, ZHAO YONG-KUAN, CUI MING-QI, LI GANG, CUI CONG-WU, TANG E-SHENG.CALIBRASION OF THE ENERGY RESPONSE FOR THE SOFT X-RAY DETECTIONS ELEMENTS WITH THE BEIJING- SYNCHROTRON RADIATION FACILITY. Acta Physica Sinica, 1997, 46(4): 650-655.doi:10.7498/aps.46.650
      [19] WU CHENG-WEI, GUO XING-LIN.ELECTRICAL PROPERTY AND SHEAR STRENGTH OF A SINGLE CHAIN IN ELECTRORHEOLOGY UNDER DC ELECTRICAL FIELD. Acta Physica Sinica, 1997, 46(8): 1500-1507.doi:10.7498/aps.46.1500
      [20] ZHANG YI-BO.STUDY OF RELATIONSHIP BETWEEN SPONTANEOUS RADIATION AND STIMULATED RADIATION IN CERENKOV FREE ELECTRON LASERS. Acta Physica Sinica, 1987, 36(10): 1344-1348.doi:10.7498/aps.36.1344
    Metrics
    • Abstract views:2617
    • PDF Downloads:50
    • Cited By:0
    Publishing process
    • Received Date:13 June 2023
    • Accepted Date:28 July 2023
    • Available Online:02 August 2023
    • Published Online:05 October 2023

      返回文章
      返回
        Baidu
        map