Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Di Shu-Hong, Zhang Yang, Yang Hui-Jing, Cui Nai-Zhong, Li Yan-Kun, Liu Hui-Yuan, Li Ling-Li, Shi Feng-Liang, Jia Yu-Xuan
    PDF
    HTML
    Get Citation
    • Because of the difficulty in measuring the cluster isotope displacement and identifying its cause, the resonance dissociation spectra, the moment shift and Zeeman energy shift of isotope cluster 87,85Rb n( n= 1, 2, 3, ··· , 13) are obtained by the combination of optical magnetic resonance and thermal dissociation techniques in this study. The quantitative calculation is carried out based on the conceptual model of the giant atom, and the results are in excellent agreement with the measured results, which shows that rubidium clusters can be analyzed as giant atoms. Furthermore, 5s electron shell level structures of the rubidium cluster 87,85Rb n( n= 1, 2, 3, ··· , 92) are calculated by using Zeeman level interval model. It is found that the main order and step distance of the 5s electron shell structure are similar to those of 3s single electron shell structure of sodium cluster in spherical symmetry. It is confirmed that the structure of the 5s electron shell of the rubidium cluster is determined by the largest energy gap in total Zeeman levels and the characteristic peaks of odd and even alternating and anomalous magnetic moments of special numbers such as n= 2 are caused by the intrinsic properties of electrons and molecular structures. It is also found that 87Rb nlevel shell structure and 85Rb nlevel shell structure strictly conform to the ratio of 3/2 magnitude relationship, and that there are abnormal differences in spectral center frequency and broadening, which may be directly related to the 85,87Rb nuclei close to the shell closure.
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

      • 87,85Rbn 5s
        电子数
        磁矩及矩移/μB 塞曼能移
        $ \Delta {\bar E_n}/{\mu _{\text{B}}}{H_0} $
        磁矩比
        $ {\bar \mu _{{87}n}}/{\bar \mu _{{85}n}} $
        塞曼能比
        $ {\bar E_{87 n}}/{\bar E_{85 n}} $
        光谱平均幅度/mV
        $ {\bar \mu _{87 n}} $ $ {\bar \mu _{85 n}} $ $ \Delta {\bar \mu _n} $ ${{{{\bar A}_{87n}}}} $ ${{{{\bar A}_{85n}}}} $ ${{{{\bar A}_{87n}}}}/ {{{{\bar A}_{85n}}}} $
        87,85Rb1 1 0.494337 0.330120 0.164217 0.164217 1.497446 1.497446 1574.50 1008.71 1.56∶1
        87,85Rb2 2 0.246984 0.164773 0.082211 0.082211 1.498935 1.498935 105.75 70.60 1.50∶1
        87,85Rb3 3 0.164598 0.109974 0.054624 0.054624 1.496699 1.496699 883.07 589.49 1.49∶1
        87,85Rb4 4 0 0 0 0 0 0 无共振
        87,85Rb5 5 0.098789 0.066044 0.032745 0.032745 1.495805 1.495805 383.47 354.10 1.08∶1
        87,85Rb6 6 0 0 0 0 0 0 无共振
        87,85Rb7 7 0.070635 0.047180 0.023455 0.023455 1.497139 1.497139 188.70 170.63 1.10∶1
        87,85Rb8 8 0 0 0 0 0 0 无共振
        87,85Rb9 9 0.054953 0.036718 0.018235 0.018235 1.496623 1.496623 84.92 79.59 1.06∶1
        87,85Rb10 10 0 0 0 0 0 0 无共振
        87,85Rb11 11 0.044975 0.030046 0.014929 0.014929 1.496871 1.496871 48.62 39.90 1.18∶1
        87,85Rb12 12 0 0 0 0 0 0 无共振
        87,85Rb13
        13 0.038060 0.025423 0.012637 0.012637 1.497070 1.497070 31.55 23.07 1.34∶1
        DownLoad: CSV

        团簇分子,
        参考分子
        X组态和分子态及其$ {\lambda }_{合} $和s A组态和分子态及其$ {\lambda }_{合} $和s X与A 稳定性比较$ {p_{\text{a}}} - {p_{\text{b}}}$

        87,85Rb1
        $ \begin{array}{c}{\text{KLMNspd(σ}}_{\text{g}}\text{5s}), \\ {}^{2}\text{Σ}{}_{\text{g}}^{+}, {\lambda }_{合}=0, s=1/2\end{array} $ $ \begin{array}{c} \text{KLMNspd}({\text{π}}_{\text{u}}4\text{d}), \\ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2\end{array} $ $ \begin{array}{c} {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1/2; \\ {\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1/2 \end{array} $
        87,85Rb2[17] $ \begin{array}{c}({\text{σ}}_{\text{g}}\text{5s})^{2}, {}^{1}\Sigma {}_{\text{g}}^{+}, {\lambda }_{合}=0, s=\text{0;}\\({\text{σ}}_{\text{g}}\text{5s)}{\text{(σ}}_{\text{u}}\text{5s)}, {}^{3}\Sigma {}_{\rm u}^{+}, \\{\lambda }_{合}=0, s=1\end{array} $ $ \begin{array}{c}{\text{(σ}}_{\text{g}}{\text{5s)(π}}_{\text{u}}\text{4d)}, {}^{1}\Pi_{\text{u}}, {\lambda }_{合}=1, s=0;\\或\; ({\text{σ}}_{\text{u}}{\text{5s)(π}}_{\text{u}}\text{4d)}, {}^{3}\Pi_{\text{g}},\\ {\lambda }_{合}=1, s=1\end{array} $ $ \begin{array}{l} {}\quad\;{\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1 - 0 = 1; \\ {}\quad\;{\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1 - 0 = 1 \\ 或\; {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1/2 - 1/2 = 0; \\ {}\quad\;{\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1/2 - 1/2 = 0\, \end{array} $
        87,85Rb3 $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{\text{(σ}}_{\text{u}}\text{5s)}, \\ {}^{2}\Sigma_{\text{u}}^{+}, {\lambda}_{合}=0, s=1/2\end{array} $ $ \begin{array}{c}{\text{(σ}}_{\text{g}}\text{5s)}{\text{(σ}}_{\text{u}}\text{5s)}{\text{(π}}_{\text{u}}\text{4d), }\\ {}^{2}\Pi_{\text{g}}^{}, {\lambda }_{合}=1, s=1/2\end{array} $ $ \begin{array}{c} {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1 - 1/2 = 1/2 \\ {\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1 - 1/2 = 1/2 \end{array} $
        87,85Rb5 $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{\text{(σ}}_{\text{g}}\text{4d), }\\ {}^{2}\Sigma_{\text{g}}^{+}, {\lambda }_{合}=0, s=1/2\end{array} $ $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{\text{(π}}_{\text{u}}\text{4d)}, \\ {}^{2}\Pi_{\text{u}}^{}, {\lambda }_{合}=1, s=1/2\end{array} $ $ \begin{array}{c} {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1\dfrac{1}{2} - 1 = 1/2 \\ {\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1\dfrac{1}{2} - 1 = 1/2 \end{array} $

        87,85Rb7
        $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{{\text{(σ}}_{\text{g}}}{\text{4d)}}^2{\text{(π}}_{\text{u}}\text{4d)}, \\ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2\end{array} $ $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{{\text{(σ}}_{\text{g}}}{\text{4d)}}^1{{\text{(π}}_{\text{u}}}{\text{4d)}}^2, \\{}^{2}\Sigma_{\text{g}}^{+}, {\lambda }_{合}=0, s=1/2;\\ {}^{2}\Delta_{\text{g}}, {\lambda }_{合}=2, s=1/2\end{array} $ $ \begin{array}{c} {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 2\dfrac{1}{2} - 1 = 1\dfrac{1}{2} \\ {\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 2\dfrac{1}{2} - 1 = 1\dfrac{1}{2} \end{array} $

        87,85Rb9
        $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{{\text{(σ}}_{\text{g}}}{\text{4d)}}^2{{\text{(π}}_{\text{u}}}{\text{4d)}}^3, \\ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2\end{array} $ $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{{\text{(σ}}_{\text{g}}}{\text{4d)}}^1{{\text{(π}}_{\text{u}}}{\text{4d)}}^4, \\ {}^{2}\Sigma_{\text{g}}^{+}, {\lambda }_{合}=0, s=1/2;\\ {}^{2}\Delta_{\text{g}}, {\lambda }_{合}=2, s=1/2\end{array} $ $ \begin{array}{c} {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 3\dfrac{1}{2} - 1 = 2\dfrac{1}{2} \\ {\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 3\dfrac{1}{2} - 1 = 2\dfrac{1}{2} \end{array} $
        87,85Rb11 $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{{\text{(σ}}_{\text{g}}}{\text{4d)}}^2{{\text{(π}}_{\text{u}}}{\text{4d)}}^4{{\text{(π}}_{\text{g}}}{\text{4d)}}^1, \\ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2\end{array} $ $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^1{{\text{(σ}}_{\text{g}}}{\text{4d)}}^2{{\text{(π}}_{\text{u}}}{\text{4d)}}^4{{\text{(π}}_{\text{g}}}{\text{4d)}}^2, \\ {}^{2}\Sigma_{\text{g}}^{+}, {\lambda }_{合}=0, s=1/2;\\ {}^{2}\Delta_{\text{g}}, {\lambda }_{合}=2, s=1/2\end{array} $ $ \begin{array}{c} {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 4 - 1\dfrac{1}{2} = 2\dfrac{1}{2} \\ {\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 4 - 1\dfrac{1}{2} = 2\dfrac{1}{2} \end{array} $
        87,85Rb13 $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{{\text{(σ}}_{\text{g}}}{\text{4d)}}^2{{\text{(π}}_{\text{u}}}{\text{4d)}}^4{{\text{(π}}_{\text{g}}}{\text{4d)}}^3, \\ {}^{2}\Pi_{\text{g}}, {\lambda }_{合}=1, s=1/2\end{array} $ $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^1{{\text{(σ}}_{\text{g}}}{\text{4d)}}^2{{\text{(π}}_{\text{u}}}{\text{4d)}}^4{{\text{(π}}_{\text{g}}}{\text{4d)}}^4, \\ {}^{2}\Sigma_{\text{u}}, {\lambda }_{合}=0, s=1/2\end{array} $ $ \begin{array}{c} {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 4 - 2\dfrac{1}{2} = 1\dfrac{1}{2} \\ {\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 4 - 2\dfrac{1}{2} = 1\dfrac{1}{2} \end{array} $
        注:表2中电子组态仅87,85Rb1的基态和激发态标出了闭壳层KLMNspd, 其他粒子没有重复标出闭壳层KLMNspd.
        DownLoad: CSV

        87Rbn 5s
        电子数
        分子态及本
        征值$ {\lambda }_{合} $和s
        模型
        F
        $ {\bar \mu _n}/{\mu _{\text{B}}} $ $ {\bar \mu _n} $相对
        误差/‰
        $ {\bar E_n}/{\mu _{\text{B}}}{H_0} $ $ {\bar E_n} $相对
        误差/‰
        模型 实验 模型 实验
        87Rb1 1 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 2 $ 1/2 $ 0.494337 –11.326 $ 1/2 $ 0.494337 –11.326
        87Rb2 2 $ {}^{3}\Pi_{\text{g}}, {\lambda }_{合}=1, s=1 $ 4 $ 1/4 $ 0.246984 –12.064 $ 1/4 $ 0.246984 –12.064
        87Rb3 3 $ {}^{2}\Pi_{\text{g}}, {\lambda }_{合}=1, s=1/2 $ 6 $ 1/6 $ 0.164598 –12.412 $ 1/6 $ 0.164598 –12.412
        87Rb5 5 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 10 $ 1/10 $ 0.098789 –12.110 $ 1/10 $ 0.098789 –12.110
        87Rb7 7 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 14 $ 1/14 $ 0.070635 –11.110 $ 1/14 $ 0.070635 –11.110
        87Rb9 9 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 18 $ 1/18 $ 0.054953 –10.846 $ 1/18 $ 0.054953 –10.846
        87Rb11 11 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 22 $ 1/22 $ 0.044975 –10.550 $ 1/22 $ 0.044975 –10.550
        87Rb13 13 $ {}^{2}\Pi_{\text{g}}, {\lambda }_{合}=1, s=1/2 $ 26 $ 1/26 $ 0.038060 –10.440 $ 1/26 $ 0.038060 –10.440
        87Rb4,6,8,10,12 4, 6, 8, 10, 12 [19,20,21] 0 0 0 0 0 0
        平均值 –6.989 –6.989
        DownLoad: CSV

        85Rbn 5s
        电子数
        分子态及本
        征值$ {\lambda }_{合} $和s
        模型
        F
        $ {\bar \mu _n}/{\mu _{\text{B}}} $ $ {\bar \mu _n} $相对
        误差/‰
        $ {\bar E_n}/{\mu _{\text{B}}}{H_0} $ $ {\bar E_n} $相对
        误差/‰
        模型 实验 模型 实验
        85Rb1 1 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 3 1/3 0.330120 –9.640 1/3 0.330120 –9.640
        85Rb2 2 $ {}^{3}\Pi_{\text{g}}, {\lambda }_{合}=1, s=1 $ 6 1/6 0.164773 –11.362 1/6 0.164773 –11.362
        85Rb3 3 $ {}^{2}\Pi_{\text{g}}, {\lambda }_{合}=1, s=1/2 $ 9 1/9 0.109974 –10.234 1/9 0.109974 –10.234
        85Rb5 5 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 15 1/15 0.066044 –9.340 1/15 0.066044 –9.340
        85Rb7 7 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 21 1/21 0.047180 –9.220 1/21 0.047180 –9.220
        85Rb9 9 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 27 1/27 0.036718 –8.614 1/27 0.036718 –8.614
        85Rb11 11 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 33 1/33 0.030046 –8.482 1/33 0.030046 –8.482
        85Rb13 13 $ {}^{2}\Pi_{\text{g}}, {\lambda }_{合}=1, s=1/2 $ 39 1/39 0.025423 –8.503 1/39 0.025423 –8.503
        85Rb4,6,8,10,12 4, 6, 8, 10, 12 [19,20,21] 0 0 0 0 0 0
        平均值 –5.800 –5.800
        DownLoad: CSV

        n $ {\bar \mu _n}/{\mu _{\text{B}}} $ 模型矩移
        $ \Delta {\bar \mu _n}/{\mu _{\text{B}}} $
        $ {\bar \mu _n}/{\mu _{\text{B}}} $ 实验矩移
        $ \Delta {\bar \mu _n}/{\mu _{\text{B}}} $
        相对误差/‰
        87Rbn模型 85Rbn模型 87Rbn实验 85Rbn实验
        1 1/2 1/3 1/6 0.494337 0.330120 0.164217 –14.698
        2 1/4 1/6 1/12 0.246984 0.164773 0.082211 –13.468
        3 1/6 1/9 1/18 0.164598 0.109974 0.054624 –16.768
        4 0 0 0 0 0 0 0
        5 1/10 1/15 1/30 0.098789 0.066044 0.032745 –17.65
        6 0 0 0 0 0 0 0
        7 1/14 1/21 1/42 0.070635 0.047180 0.023455 –14.89
        8 0 0 0 0 0 0 0
        9 1/18 1/27 1/54 0.054953 0.036718 0.018235 –15.31
        10 0 0 0 0 0 0 0
        11 1/22 1/33 1/66 0.044975 0.030046 0.014929 –14.686
        12 0 0 0 0 0 0 0
        13 1/26 1/39 1/78 0.038060 0.025423 0.012637 –14.314
        平均值 –9.368
        DownLoad: CSV

        n $ {\bar E_n}/{\mu _{\text{B}}}{H_0} $ 模型能移
        $\Delta {\bar E_n}/{\mu _{\text{B}}}{H_0} $
        $ {\bar E_n}/{\mu _{\text{B}}}{H_0} $ 实验能移
        $ \Delta{\bar E_n}/{\mu _{\text{B}}}{H_0} $
        相对误差/‰
        87Rbn模型 85Rbn模型 87Rbn实验 85Rbn实验
        1 1/2 1/3 1/6 0.494337 0.330120 0.164217 –14.698
        2 1/4 1/6 1/12 0.246984 0.164773 0.082211 –13.468
        3 1/6 1/9 1/18 0.164598 0.109974 0.054624 –16.768
        4 0 0 0 0 0 0 0
        5 1/10 1/15 1/30 0.098789 0.066044 0.032745 –17.65
        6 0 0 0 0 0 0 0
        7 1/14 1/21 1/42 0.070635 0.047180 0.023455 –14.89
        8 0 0 0 0 0 0 0
        9 1/18 1/27 1/54 0.054953 0.036718 0.018235 –15.31
        10 0 0 0 0 0 0 0
        11 1/22 1/33 1/66 0.044975 0.030046 0.014929 –14.686
        12 0 0 0 0 0 0 0
        13 1/26 1/39 1/78 0.038060 0.025423 0.012637 –14.314
        平均值 –9.368
        DownLoad: CSV

        n 1 5 7 9
        1/2 CC87/kHz 78.52 19.22 7.92 8.73
        1/2 CC85/kHz 98.34 24.84 17.06 12.41
        CC87/CC85 0.80 0.77 0.46 0.70
        BC87/kHz 812.75 167.60 116.40 89.10
        BC85/kHz 510.55 113.51 74.35 58.63
        BC87/BC85 1.59 1.47 1.57 1.48
        注: 实验测量的1/2 CC是共振峰的半峰高处左半部分对应的中心频率的展宽.
        DownLoad: CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

      • [1] Liu Xuan, Gao Teng, Xie Shi-Jie.Isotope effect of carrier transport in organic semiconductors. Acta Physica Sinica, 2020, 69(24): 246701.doi:10.7498/aps.69.20200789
        [2] Li Wen-Tao, Yu Wen-Tao, Yao Ming-Hai.H/D + Li2 LiH/LiD + Li reactions studied by quantum time-dependent wave packet approach. Acta Physica Sinica, 2018, 67(10): 103401.doi:10.7498/aps.67.20180324
        [3] Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang.First-principle study on quantum thermal transport in a polythiophene chain. Acta Physica Sinica, 2018, 67(2): 026501.doi:10.7498/aps.67.20171198
        [4] Shen Yong, Dong Jia-Qi, Xu Hong-Bing.Role of impurities in modifying isotope scaling law of ion temperature gradient turbulence driven transport in tokamak. Acta Physica Sinica, 2018, 67(19): 195203.doi:10.7498/aps.67.20180703
        [5] Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang, Cen Chao.Isotope effect on quantum thermal transport in a polyethylene chain. Acta Physica Sinica, 2017, 66(11): 116501.doi:10.7498/aps.66.116501
        [6] Wang Ming-Xin, Wang Mei-Shan, Yang Chuan-Lu, Liu Jia, Ma Xiao-Guang, Wang Li-Zhi.Influence of isotopic effect on the stereodynamics of reaction H+NH→N+H2. Acta Physica Sinica, 2015, 64(4): 043402.doi:10.7498/aps.64.043402
        [7] Duan Zhi-Xin, Qiu Ming-Hui, Yao Cui-Xia.Quantum wave-packet and quasiclassical trajectory of reaction S(3P)+HD. Acta Physica Sinica, 2014, 63(6): 063402.doi:10.7498/aps.63.063402
        [8] Wang Jie-Min, Zhang Lei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng.A Multi-reference configuration interaction investigation of the X2+and A2 low-lying electronic states of AsO+ isotope ion. Acta Physica Sinica, 2012, 61(15): 153105.doi:10.7498/aps.61.153105
        [9] Sun Ji-Zhong, Zhang Zhi-Hai, Liu Sheng-Guang, Wang De-Zhen.Molecular dynamics simulation of energetic hydrogen isotopes bombarding the crystalline graphite(001). Acta Physica Sinica, 2012, 61(5): 055201.doi:10.7498/aps.61.055201
        [10] Xia Wen-Ze, Yu Yong-Jiang, Yang Chuang-Lu.Influences of isotopic variant and collision energy on the stereodynamics of the N(4S)+H2 reactive system. Acta Physica Sinica, 2012, 61(22): 223401.doi:10.7498/aps.61.223401
        [11] Liu Hui, Xing Wei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng.Study on spectroscopic parameters and molecular constants of CS+(X2Σ+) and CS+(A2Π) by MRCI. Acta Physica Sinica, 2011, 60(4): 043102.doi:10.7498/aps.60.043102
        [12] Linghu Rong-Feng, Xu Mei, Wang Xiao-Lu, Lü Bing, Yang Xiang-Dong.The effect of symmetrical isotopic substitution in Ne-H2 collision. Acta Physica Sinica, 2010, 59(4): 2416-2422.doi:10.7498/aps.59.2416
        [13] Xu Yan, Zhao Juan, Wang Jun, Liu Fang, Meng Qing-Tian.Influence of the collision energy and isotopic variant on the stereodynamics of reaction H+BrF→HBr+F. Acta Physica Sinica, 2010, 59(6): 3885-3891.doi:10.7498/aps.59.3885
        [14] Yu Chun-Ri, Wang Rong-Kai, Zhang Jie, Yang Xiang-Dong.Differential cross sections for collisions between He isotope atoms and HBr molecules. Acta Physica Sinica, 2009, 58(1): 229-233.doi:10.7498/aps.58.229
        [15] Sheng Zong-Qiang, Guo Jian-You.Systematic investigation of shape-coexistence in Se,Kr,Sr and Zr isotopes with relativistic mean field theory. Acta Physica Sinica, 2008, 57(3): 1557-1563.doi:10.7498/aps.57.1557
        [16] Luo Wen-Lang, Ruan Wen, Zhang Li, Xie An-Dong, Zhu Zheng-He.Analytical potential energy function for tritium water molecule T2O(X1A1). Acta Physica Sinica, 2008, 57(8): 4833-4839.doi:10.7498/aps.57.4833
        [17] Wang Rong-Kai, Shen Guang-Xian, Song Xiao-Shu, Linghu Rong-Feng, Yang Xiang-Dong.Influence of He isotope on the differential cross section for He-NO collision system. Acta Physica Sinica, 2008, 57(7): 4138-4142.doi:10.7498/aps.57.4138
        [18] Zhang Li, Zhu Zheng-He, Yang Ben-Fu, Long Xing-Gui, Luo Shun-Zhong.Electron-vibration approximation method for hydrogen isotope compounds TiH2,TiD2 and TiT2. Acta Physica Sinica, 2006, 55(10): 5418-5423.doi:10.7498/aps.55.5418
        [19] Zheng Li-Ping, Zhang Hu-Yong, Wang Ting-Tai, Ma Yu-Gang.Analysis of the contributions of PKA and SKA to the isotope enrichment. Acta Physica Sinica, 2004, 53(5): 1577-1582.doi:10.7498/aps.53.1577
        [20] LI WEN-FEI, ZHANG FENG-SHOU, CHEN LIE-WEN.CHEMICAL INSTABILITY AND ISOSPIN EFFECTS IN ISOTOPIC DISTRIBUTIONS. Acta Physica Sinica, 2001, 50(6): 1040-1045.doi:10.7498/aps.50.1040
      • supplement2023年72卷182101-补充材料.ZIP supplement
      Metrics
      • Abstract views:2238
      • PDF Downloads:39
      • Cited By:0
      Publishing process
      • Received Date:14 May 2023
      • Accepted Date:02 July 2023
      • Available Online:18 July 2023
      • Published Online:20 September 2023

        返回文章
        返回
          Baidu
          map