-
Aiming at the shortcomings of helically twisted single-cladding-few-core photonic crystal fibers in generating orbital angular momentum (OAM), the double-cladding and three-core structures with non-uniform inner and outer air holes are introduced into a photonic crystal fiber for the first time and the generation of high-order OAM modes through helical twisting is realized. The fiber is expected to reduce the losses of the generated OAM modes by introducing a specially designed double-cladding structure, while the three cores distributed in a regular triangle around the center are expected to increase the number of generated OAM modes. On the basis of optical transformation theory, the optical fiber is systematically analyzed by the finite element method. It is found that with the twist rate α= 7853.98 rad/m, the generated OAM modes include “OAM –4,1, OAM +9,1, OAM +10,1, OAM +11,1, OAM +13,1”, where +13 is the highest order in the OAM modes currently generated by using helically twisted fibers. And the losses of OAM modes are all less than 1.64×10 –3dB/m, which is at least two orders of magnitude lower than the lowest OAM mode loss reported in the existing references (Napiorkowski M, Urbanczyk W S 2018 Opt. Express 2612131), and their purity is greater than 93%. Further studies show that the generation of orbital angular momentum depends on the resonant coupling between the core supermode and the ring-core mode, and the parity of the order of the generated OAM modes is related to the polarization direction of the fiber core supermode and the ring-core mode.
-
Keywords:
- orbital angular momentum/
- helically twisted optical fiber/
- resonance coupling/
- circular birefringence
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] -
Peaks LC/μm Peaks LC/μm M1 (RC,s= –1) + $ {\text{OAM}}_{ + 13, 1}^ + $ ($ {\text{EH}}_{12, 1}^{{\text{odd}}} $) = a 36.20 M1 (RC,s= –1) + $ {\text{OAM}}_{ + 10, 1}^ + $ ($ {\text{EH}}_{9, 1}^{{\text{odd}}} $) = h 47.95 M2 (RC,s= –1) + $ {\text{OAM}}_{ + 11, 1}^ + $ ($ {\text{EH}}_{10, 1}^{{\text{odd}}} $) = b 40.81 M2 (RC,s= –1) + $ {\text{OAM}}_{ - 4, 1}^ + $ ($ {\text{HE}}_{5, 1}^{{\text{odd}}} $) = i 125.32 M3 (LC,s= +1) + $ {\text{OAM}}_{ + 10, 1}^ - $ ($ {\text{HE}}_{11, 1}^{{\text{even}}} $) = g 46.44 — — M4 (LC,s= +1) + $ {\text{OAM}}_{ + 11, 1}^ - $ ($ {\text{HE}}_{12, 1}^{{\text{even}}} $) = c 38.68 — — M5 (RC,s= –1) + $ {\text{OAM}}_{ + 9, 1}^ + $ ($ {\text{EH}}_{8, 1}^{{\text{odd}}} $) = d 50.18 M5 (RC,s= –1) + $ {\text{OAM}}_{ + 10, 1}^ - $ ($ {\text{HE}}_{11, 1}^{{\text{even}}} $) = f 36.93 M6 (LC,s= +1) + $ {\text{OAM}}_{ + 9, 1}^ - $ ($ {\text{HE}}_{10, 1}^{{\text{even}}} $) = e 47.47 — — -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44]
Catalog
Metrics
- Abstract views:2185
- PDF Downloads:71
- Cited By:0