\begin{document}$ \tilde Z $\end{document}. The \begin{document}$ \tilde Z $\end{document} is usually a complex function of the frequency, and it can be used to formulate an impedance boundary condition (IBC) to describe iterative equations in time domain methods, avoiding the volumetric discretization of the target and improving computational efficiency. This condition is commonly known as the surface impedance boundary condition (SIBC). Similarly, for a conductor whose thickness is in the order of skin depth or less, it also has high resource requirements, if the target is of direct volume discretization. The transmission impedance boundary condition (TIBC) can be utilized instead of a coated object to reduce resource requirements. Therefore, there is no need to discretize volume.There are few studies on the IBC scheme by using the discontinuous Galerkin time-domain (DGTD) method. Li et al. (Li P, Shi Y, Jiang L J, Bağcι H 2015 IEEE Trans. Antennas Propag. 63 5686; Li P, Jiang L J, Bağcι H 2015 IEEE Trans. Antennas Propag. 63 3065 ; Li P, Jiang L J, Bağcι H 2018 IEEE Trans. Antennas Propag. 66 3590 ) discussed the IBC scheme by using the DGTD, which involves complex matrix operations in the processing of IBC. In the DGTD method, numerical flux is used to transmit data between neighboring elements, and the key to the IBC scheme in DGTD is how to handle numerical flux. We propose a DGTD method with a simple form and matrix-free IBC scheme. The key to dealing with IBC in DGTD is numerical flux. Unlike the way in the literature, the impedance \begin{document}$ \tilde Z $\end{document} is not approximated by rational functions in our study. A specfic function \begin{document}$ {\tilde Z_R} $\end{document} obtained after the derivation in this work is approximated by rational functions in the Laplace domain through using the vector-fitting (VF) method, and its time-domain iteration scheme is given. This approach avoids matrix operations. The TIBC and SIBC processing schemes are also given. The advantage of the proposed method are that the upwind flux’s standard coefficients are retained and the complex frequency-time conversion problem is implemented by the vector-fitting method. The one-dimensional and three-dimensional examples also show the accuracy and effectiveness of our proposed method in this work."> A simplified impedance boundary algorithm in discontinuous Galerkin time-domain - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Yang Qian, Wei Bing, Li Lin-Qian, Deng Hao-Chuan
    PDF
    HTML
    Get Citation
    Metrics
    • Abstract views:2700
    • PDF Downloads:65
    • Cited By:0
    Publishing process
    • Received Date:02 November 2022
    • Accepted Date:13 December 2022
    • Available Online:18 January 2023
    • Published Online:20 March 2023

      返回文章
      返回
        Baidu
        map