\begin{document}$ {\alpha }^{1}{\beta }_{0} $\end{document}. The electric-dipole static polarizability of the 2s2 1S0 state and 2s2p 3P0 state of B+ ion are 9.6220 a.u. and 7.7594 a.u., respectively. The presently calculated blackbody radiation (BBR) shift of the 2s2p 3P0 → 2s2 1S0 clock transition is 0.01605 Hz. This BBR shift is one or two orders of magnitude smaller than that for alkaline-earth-metal atom."> Theoretical study of static dipole polarizabilities and hyperpolarizability of B<sup>2+</sup> and B<sup>+</sup> ions - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

Chen Chi-Ting, Wu Lei, Wang Xia, Wang Ting, Liu Yan-Jun, Jiang Jun, Dong Chen-Zhong
PDF
HTML
Get Citation
  • The wave functions, energy levels, and oscillator strengths of B 2+ions and B +ions are calculated by using a relativistic potential model, which is named the relativistic configuration interaction plus core polarization (RCICP) method.The presently calculated energy levels are in very good agreement with experimental energy levels tabulated in NIST Atomic Spectra Database, with difference no more than 0.05%.The presently calculated oscillator strengths agree very well with NIST and some available theoretical results. The difference is no more than 0.6%. By using these energy levels and oscillator strengths, the electric-dipole static polarizability of the 2s 1/2, 2p 1/2, 2p 3/2, and 3s 1/2state and static hyperpolarizability of the ground state 2s 1/2for B 2+ion, as well as electric-dipole static polarizability of the 2s 2 1S 0state and 2s2p 3P 0state for B +ion are determined, respectively. The polarizability of the 2p 1/2state and 2p 3/2state of B 2+ion are negative. The main reason is that the absorption energy of the 2p 1/2,3/2→ 2s 1/2resonance transition is negative. The contribution to the polarizability of the 2p 1/2state and 2p 3/2state are both negative. For the tensor polarizability of the 2p 3/2state, the main contribution from the 2p 3/2→ 2s 1/2transition and 2p 3/2→ 3d 5/2transition are 2.4963 a.u. and –0.2537 a.u., respectively, and the present RCICP result is 2.1683 a.u. The largest contribution to the hyperpolarizability of the ground state 2s 1/2originates from the term of $ {\alpha }^{1}{\beta }_{0} $ . The electric-dipole static polarizability of the 2s 2 1S 0state and 2s2p 3P 0state of B +ion are 9.6220 a.u. and 7.7594 a.u., respectively. The presently calculated blackbody radiation (BBR) shift of the 2s2p 3P 0→ 2s 2 1S 0clock transition is 0.01605 Hz. This BBR shift is one or two orders of magnitude smaller than that for alkaline-earth-metal atom.
        Corresponding author:Jiang Jun,phyjiang@yeah.net
      • Funds:Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602500), the National Natural Science Foundation of China (Grant No. 12174316), the Young Teachers Scientific Research Ability Promotion Plan of Northwest Normal University, China (Grant No. NWNU-LKQN2020-10), and the Funds for Innovative Fundamental Research Group Project of Gansu Province, China (Grant No. 20JR5RA541).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

    • State j $ {\rho }_{l, j} $
      2s 1/2 0.72951
      2p 1/2 0.67398
      3/2 0.67164
      3d 3/2 0.91441
      5/2 0.91355
      DownLoad: CSV

      State j RCICP Expt.[33] Diff./%
      2s 1/2 –1.3939235 –1.3939235 0
      2p 1/2 –1.1735867 –1.1735867 0
      3/2 –1.1734313 –1.1734313 0
      3s 1/2 –0.5728008 –0.5728632 0.01
      3p 1/2 –0.5146980 –0.5147730 0.01
      3/2 –0.5146520 –0.5147274 0.01
      3d 3/2 –0.5005686 –0.5005686 0
      5/2 –0.5005553 –0.5005553 0
      4s 1/2 –0.3108609 –0.3108905 0.01
      4p 1/2 –0.2874707 –0.2875098 0.01
      3/2 –0.2874514 –0.2874920 0.01
      4d 3/2 –0.2815308 –0.2815324 0
      5/2 –0.2815252 –0.2815268 0
      4f 5/2 –0.2812848 –0.2812705 0.01
      7/2 –0.2812820 –0.2812676 0.01
      5s 1/2 –0.1948639 –0.1948793 0.01
      5p 1/2 –0.1831864 –0.1832067 0.01
      3/2 –0.1831765 –0.1831970 0.01
      5d 3/2 –0.1801535 –0.1801552 0
      5/2 –0.1801507 –0.1801523 0
      5f 5/2 –0.1800204 –0.1800138 0
      7/2 –0.1800190 –0.1800124 0
      DownLoad: CSV

      Transitions RCICP RMBPT[42] HR[43] NIST[41] Diff./%
      2s1/2→2p1/2 0.121251 0.121101 0.121076 0.12099 0.22
      2s1/2→2p3/2 0.242723 0.242501 0.242399 0.24215 0.24
      2s1/2→3p1/2 0.051084 0.05108 0.01
      2s1/2→3p3/2 0.102061 0.10240 0.33
      2p1/2→3s1/2 0.046308 0.046288 0.04636 0.11
      2p1/2→3d3/2 0.637937 0.63800 0.01
      2p1/2→4s1/2 0.008193 0.008233 0.49
      2p1/2→4d3/2 0.122573 0.12280 0.19
      2p3/2→3s1/2 0.046346 0.046338 0.04636 0.03
      2p3/2→3d3/2 0.063806 0.06381 0.01
      2p3/2→3d5/2 0.574284 0.57430 0
      2p3/2→4s1/2 0.008198 0.008236 0.46
      2p3/2→4d3/2 0.012256 0.01228 0.20
      2p3/2→4d5/2 0.110323 0.11050 0.16
      3s1/2→3p1/2 0.203293 0.20310 0.10
      3s1/2→3p3/2 0.406942 0.4068 0.04
      3s1/2→4p1/2 0.048745 0.04850 0.51
      3s1/2→4p3/2 0.097357 0.09700 0.37
      DownLoad: CSV

      2s1/2 2p1/2 2p3/2 3s1/2
      Contr. $ {\alpha }_{}^{{\rm{S}}} $ FCPC[44] Contr. $ {\alpha }_{}^{{\rm{S}}} $ Contr. $ {\alpha }_{}^{{\rm{S}}} $ $ {\alpha }^{{\rm{T}}} $ Contr. $ {\alpha }_{}^{{\rm{S}}} $
      2p1/2 2.4975 2.4953[44] 2s1/2 –2.4975 2s1/2 –2.4963 2.4963 3p1/2 60.218
      2p3/2 4.9926 4.9872[44] 3d3/2 1.4084 3d5/2 1.2684 –0.2537 3p3/2 120.35
      Remains 0.3433 0.3453[44] Remains 0.4959 Remains 0.6371 –0.0743 Remains 2.3125
      Core[30] 0.0195 0.0195[44] Core 0.0195 Core 0.0195 Core 0.0195
      Total 7.8529 7.8473[44] Total –0.5737 Total –0.5713 2.1683 Total 182.90
      CICP[45] 7.8460 –0.56938 182.94
      SCC[46] 7.85
      FCG[47] 7.8591
      DownLoad: CSV

      Contributions $ {\gamma }_{0}\left(2{\rm{s}}\right) $ $ {\gamma }_{0}^{{\rm{C}}}\left(2{\rm{s}}\right) $
      $ \dfrac{1}{18}T({\rm{s}}, {{\rm{p}}}_{1/2}, {\rm{s}}, {{\rm{p}}}_{1/2}) $ 1.251(1) 1.250
      $ -\dfrac{1}{18}T({\rm{s}}, {{\rm{p}}}_{1/2}, {\rm{s}}, {{\rm{p}}}_{3/2}) $ 2.501(1) 2.500
      $ -\dfrac{1}{18}T({\rm{s}}, {{\rm{p}}}_{3/2}, {\rm{s}}, {{\rm{p}}}_{1/2}) $ 2.501(1) 2.500
      $ \dfrac{1}{18}T({\rm{s}}, {{\rm{p}}}_{3/2}, {\rm{s}}, {{\rm{p}}}_{3/2}) $ 5.001(1) 5.000
      $T({\rm{s} }, { {\rm{p} } }_{ {j}^{'} }, {\rm{s} }, { {\rm{p} } }_{ {j}^{''} })$ 11.255(5) 11.250
      $\dfrac{1}{18}T({\rm{s} }, { {\rm{p} } }_{1/2}{, {\rm{d} } }_{3/2}, { {\rm{p} } }_{1/2})$ 9.588(8) 9.580
      $\dfrac{1}{18\sqrt{10} }T({\rm{s} }, { {\rm{p} } }_{1/2}{, {\rm{d} } }_{3/2}, { {\rm{p} } }_{3/2})$ 1.917(2) 1.915
      $\dfrac{1}{18\sqrt{10} }T({\rm{s} }, { {\rm{p} } }_{3/2}{, {\rm{d} } }_{3/2}, { {\rm{p} } }_{1/2})$ 1.917(2) 1.915
      $\dfrac{1}{180}T({\rm{s} }, { {\rm{p} } }_{3/2}{, {\rm{d} } }_{3/2}, { {\rm{p} } }_{3/2})$ 0.383(1) 0.382
      $\dfrac{1}{30}T({\rm{s} }, { {\rm{p} } }_{3/2}{, {\rm{d} } }_{5/2}, { {\rm{p} } }_{3/2})$ 20.692(16) 20.676
      $T({\rm{s} }, { {\rm{p} } }_{ {j}^{'} }{, {\rm{d} } }_{j}, { {\rm{p} } }_{ {j}^{''} })$ 34.497(28) 34.469
      $ {\alpha }^{1}{\beta }_{0} $ 134.364(586) 133.778
      RCICP –1063.346(6.645) –1056.701
      UCHF[50] –1160
      CHF[49] –1120
      DownLoad: CSV

      State RCICP Expt.[51] Diff./%
      2$ {{\rm{s}}}^{2}{{}_{}{}^{1}{\rm{S}}}_{0} $ –2.318347 –2.318347 0
      2s2p$ {{}_{}{}^{3}{\rm{P}}}_{0} $ –2.148235 –2.148233 0
      2s2p$ {{}_{}{}^{3}{\rm{P}}}_{1} $ –2.148205 –2.148205 0
      2s2p$ {{}_{}{}^{3}{\rm{P}}}_{2} $ –2.148178 –2.148132 0
      2s2p$ {{}_{}{}^{1}{\rm{P}}}_{1} $ –1.9832 –1.983927 0.03
      2$ {{\rm{p}}}^{2}{{}_{}{}^{3}{\rm{P}}}_{0} $ –1.867621 –1.867673 0
      2$ {{\rm{p}}}^{2}{{}_{}{}^{3}{\rm{P}}}_{1} $ –1.867634 –1.867634 0
      2$ {{\rm{p}}}^{2}{{}_{}{}^{3}{\rm{P}}}_{2} $ –1.867565 –1.867573 0
      2$ {{\rm{p}}}^{2}{{}_{}{}^{1}{\rm{D}}}_{2} $ –1.852917 –1.851947 0.05
      2$ {{\rm{p}}}^{2}{{}_{}{}^{1}{\rm{S}}}_{0} $ –1.736452 –1.736679 0.01
      2s3s $ {{}_{}{}^{3}{\rm{S}}}_{1} $ –1.727042 –1.727053 0
      2s3s $ {{}_{}{}^{1}{\rm{S}}}_{0} $ –1.690800 –1.691293 0.03
      2s3p $ {{}_{}{}^{3}{\rm{P}}}_{0} $ –1.662206 –1.662280 0
      2s3p $ {{}_{}{}^{3}{\rm{P}}}_{1} $ –1.662167 –1.662277 0.01
      2s3p $ {{}_{}{}^{3}{\rm{P}}}_{2} $ –1.662006 –1.662261 0.02
      2s3p $ {{}_{}{}^{1}{\rm{P}}}_{1} $ –1.661601 –1.661765 0.01
      2s3d $ {{}_{}{}^{3}{\rm{D}}}_{1} $ –1.631934 –1.631936 0
      2s3d $ {{}_{}{}^{3}{\rm{D}}}_{2} $ –1.631720 –1.631936 0.01
      2s3d $ {{}_{}{}^{1}{\rm{D}}}_{2} $ –1.613116 –1.613545 0.03
      $ 2{\rm{s}}4{\rm{s}}{{}_{}{}^{3}{\rm{S}}}_{1} $ –1.560411 –1.560423 0
      $ 2{\rm{s}}4{\rm{s}}{{}_{}{}^{1}{\rm{S}}}_{0} $ –1.552914 –1.553177 0.02
      $ 2{\rm{s}}4{\rm{p}} $ $ {{}_{}{}^{1}{\rm{P}}}_{1} $ –1.540973 –1.541075 0.01
      $ 2{\rm{s}}4{\rm{p}} $ $ {{}_{}{}^{3}{\rm{P}}}_{1} $ –1.5366 –1.5367 0.01
      $ 2{\rm{s}}4{\rm{p}} $ $ {{}_{}{}^{3}{\rm{P}}}_{2} $ –1.536439 –1.536726 0.02
      $ 2{\rm{s}}4{\rm{p}} $ $ {{}_{}{}^{3}{\rm{P}}}_{0} $ –1.536693 –1.536726 0
      $ 2{\rm{s}}4{\rm{d}} $ $ {{}_{}{}^{3}{\rm{D}}}_{2} $ –1.524938 –1.525210 0.02
      $ 2{\rm{s}}4{\rm{d}} $ $ {{}_{}{}^{3}{\rm{D}}}_{1} $ –1.525198 –1.525210 0
      DownLoad: CSV

      Transition RCICP CICP[45] BCICP[52] MCHF-BP[53] MCHF[54] NIST.[41]
      2s2 1S02s2p1P1 1.00092 0.99907 1.002 1.001 0.9976(22) 0.9990
      2s2 1S0→2s3p1P1 0.10829 0.10959 0.108 0.1087 0.1093(3) 0.1090
      2s2 1S0→2s4p1P1 0.05331 0.0530 0.0514
      2s2 1S02s5p1P1 0.02244 0.0230 0.0241
      2s2p3P02p23P1 0.34113 0.34298 0.365 0.3430 0.3427(2) 0.3400
      2s2p3P02s3s3S1 0.06437 0.06377 0.06397 0.0640
      2s2p3P02s3d3D1 0.47657 0.47627 0.473 0.4759 0.4750
      2s2p3P02s4s3S1 0.01170 0.0115
      2s2p3P02s4d3D1 0.12480 0.125 0.1260
      DownLoad: CSV

      2s2 1S0 2s2p3P0
      Contributions polarizability/a.u. Contributions polarizability/a.u.
      2s2 1S0→2s2p1P1 8.9149 2s2p3P0→2p2p3P1 4.3326
      2s2 1S0→2s3p1P1 0.2511 2s2p3P0→2s3d3D1 1.7878
      Remains 0.4365 Remains 1.6195
      Core 0.0195 Core 0.0195
      RCICP 9.6220 RCICP 7.7594
      CI[55] 9.5750 CI[55] 7.7790
      CI+MBPT[55] 9.6130 CI+MBPT[55] 7.7690
      CI+all-orders[55] 9.6240 CI+all-order[55] 7.7720
      CCD+ST[56] 9.5660
      CICP[45] 9.6441 CICP[45] 7.7798
      PRCC[29] 9.4130
      CCSDpT[57] 10.395(22)
      RRV[58] 9.6210
      DownLoad: CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

    • [1] Wang Ting, Jiang Li, Wang Xia, Dong Chen-Zhong, Wu Zhong-Wen, Jiang Jun.Theoretical study of polarizabilities and hyperpolarizabilities of Be+ions and Li atoms. Acta Physica Sinica, 2021, 70(4): 043101.doi:10.7498/aps.70.20201386
      [2] Shi Mao-Lei, Liu Lei, Tian Fang-Hui, Wang Peng-Fei, Li Jia-Jun, Ma Lei.Effect of lithium-free flux B2O3 on the ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Acta Physica Sinica, 2017, 66(20): 208201.doi:10.7498/aps.66.208201
      [3] Chen Ze-Zhang.Theoretical study on the polarizability properties of liquid crystal in the THz range. Acta Physica Sinica, 2016, 65(14): 143101.doi:10.7498/aps.65.143101
      [4] Wang Jie-Min, Feng Heng-Qiang, Sun Jin-Feng, Shi De-Heng, Li Wen-Tao, Zhu Zun-Lüe.A study on spectroscopic parameters of X2+, A2 and B2+ low-lying electronic states of SiN radical. Acta Physica Sinica, 2013, 62(1): 013105.doi:10.7498/aps.62.013105
      [5] Zhu Jing, Lü Chang-Gui, Hong Xu-Sheng, Cui Yi-Ping.Theoretical study on solvent effect of the molecular first hyperpolarizability. Acta Physica Sinica, 2010, 59(4): 2850-2854.doi:10.7498/aps.59.2850
      [6] Wang Lei, Hu Hui-Fang, Wei Jian-Wei, Zeng Hui, Yu Ying-Ying, Wang Zhi-Yong, Zhang Li-Juan.Theoretical study on the first hyperpolarizabilities of stilbene derivatives. Acta Physica Sinica, 2008, 57(5): 2987-2993.doi:10.7498/aps.57.2987
      [7] Lu Zhen-Ping, Han Kui, Li Hai-Peng, Zhang Wen-Tao, Huang Zhi-Min, Shen Xiao-Peng, Zhang Zhao-Hui, Bai Lei.Theoretical study of molecular vibrational hyperpolarizability of 4-N-methylstilbazonium salt derivatives. Acta Physica Sinica, 2007, 56(10): 5843-5848.doi:10.7498/aps.56.5843
      [8] Li Hai-Peng, Han Kui, Lu Zhen-Ping, Shen Xiao-Peng, Huang Zhi-Min, Zhang Wen-Tao, Bai Lei.Theoretical investigation on dispersion effect and two-photon resonance enhancement of molecular first hyperpolarizability. Acta Physica Sinica, 2006, 55(4): 1827-1831.doi:10.7498/aps.55.1827
      [9] Tang Chang-Jian, Gong Yu-Bin, Yang Yu-Zhi.Dielectric tensor of 2D relativistic motional plasma. Acta Physica Sinica, 2004, 53(4): 1145-1149.doi:10.7498/aps.53.1145
      [10] Zheng Yang-Dong, Li Jun-Qing, Li Chun-Fei.. Acta Physica Sinica, 2002, 51(6): 1279-1285.doi:10.7498/aps.51.1279
      [11] LI HUI-LING, RUAN KE-QING, LI SHI-YAN, MO WEI-QIN, FAN RONG, LUO XI-GANG, CHEN XIAN-HUI, CAO LIE-ZHAO.STUDY ON THE RESISTIVITY AND HALL EFFECT OF MgB2 AND Mg0.93Li0.07B2. Acta Physica Sinica, 2001, 50(10): 2044-2048.doi:10.7498/aps.50.2044
      [12] LIU JIA-LU, ZHANG TING-QING, FENG JIAN-HUA, ZHOU GUAN-SHAN, YING MING-JIONG.STUDY OF B+-IMPLANTED HgCdTe UNDER RAPID THERMAL ANNEALING. Acta Physica Sinica, 1998, 47(1): 47-52.doi:10.7498/aps.47.47
      [13] WANG RUI-PING, HUANG DA-JIN, SHI QIN-WEI, XU PENG, CHEN QI, GU GEN-DA, CAI WEI-LI, ZHOU GUI-EN, RUAN YAO-ZHONG.ANISOTROPIC THERMOELECTRIC POWER OF Bi2Sr2CaCu2O8 SINGLE CRYSTAL. Acta Physica Sinica, 1992, 41(7): 1147-1150.doi:10.7498/aps.41.1147
      [14] LU WU-XING, QIAN YA-HONG, TIAN REN-HE, WANG ZHONG-LIE.SUPPRESSION AND ELIMINATION OF SECONDARY DEFECTS IN SILICON IMPLANTED WITH MeV ENERGETIC B+ IONS. Acta Physica Sinica, 1990, 39(2): 254-260.doi:10.7498/aps.39.254
      [15] HE XING-HONG, LI BAI-WEN, ZHANG CHENG-XIU.POLARIZABILITIES OF HIGH RYDBERG ALKALI ATOMS. Acta Physica Sinica, 1989, 38(10): 1717-1722.doi:10.7498/aps.38.1717
      [16] CUI WAN-QIU, ZHANG JIAN, YUAN PING, WANG GUO-MEI, YUN HUAI-SHUN.A STUDY ON STRUCTURE OF AMORPHOUS FAST IONIC CONDUCTOR IN SYSTEM LiF-LiCl-B2O3. Acta Physica Sinica, 1986, 35(4): 497-504.doi:10.7498/aps.35.497
      [17] YANG YUAN, YANG PEI-FANG, YU WEI-HAI.STUDY ON THE FREQUECY DEPENDENCE OF THE CONDUCTIVITY OF AMORPHOUS B2O3-0.7Li2O-0.7LiCl. Acta Physica Sinica, 1984, 33(7): 943-951.doi:10.7498/aps.33.943
      [18] CHEN LI-QUAN, WANG LIAN-ZHONG, CHE GUANG-CAN, WANG GANG.IONIC CONDUCTION DURING PRE-CRYSTALLIZATION PROCESS IN AMORPHOUS IONIC CONDUCTOR Li2B2O4. Acta Physica Sinica, 1983, 32(9): 1177-1182.doi:10.7498/aps.32.1177
      [19] WANG GANG, LI ZI-RONG, CHEN LI-QUAN, WANG LIAN-ZHONG.7Li NMR INVESTIGATIONS IN AMORPHOUS IONIC CONDUC-TOR Li2B2O4. Acta Physica Sinica, 1983, 32(8): 1104-1108.doi:10.7498/aps.32.1104
      [20] CHEN CHUANG-TIAN.AN IONIC GROUPING THEORY OF THE ELECTRO-OPTICAL AND NON-LINEAR OPTICAL EFFECTS OF CRYSTALS (IV)——THE CALCULATION OF LINEAR OPTICAL SUSCEPTIBILITIES IN CRYSTALS OF THE PEROVSKITE AND THE TUNGSTEN BRONZE STRUCTURE TYPES. Acta Physica Sinica, 1978, 27(1): 41-46.doi:10.7498/aps.27.41
    Metrics
    • Abstract views:3081
    • PDF Downloads:81
    • Cited By:0
    Publishing process
    • Received Date:17 October 2022
    • Accepted Date:27 April 2023
    • Available Online:25 May 2023
    • Published Online:20 July 2023

      返回文章
      返回
        Baidu
        map