-
In response to the demand for identity authentication in quantum secure direct communication, this paper proposes a quantum secure direct communication scheme based on a mixture of single photon and Bell state, by combining the bidirectional identity authentication. Before communication begins, both parties share a series of secret information to prepare a series of single photon and Bell state particles. Encoding four single photons and four Bell states yields eight types of encoded information, followed by identity authentication. The first step in identity authentication is to use a single photon to verify the legitimacy of the receiver. If the error exceeds the given threshold, it indicates the presence of eavesdropping. Otherwise, the channel is safe. Then, Bell state particles are used to verify the legitimacy of the sender, and the threshold is also used to determine whether there is eavesdropping. The present method is the same as previous one. If the error rate is higher than the given threshold, it indicates the existence of third-party eavesdropping. Otherwise, it indicates that the channel is secure. As for the specific verification method, it will be explained in detail in the article. Afterwards, Bell state particles are mixed with a single photon as a transmission carrier, and eavesdropping detection particles are added whenever the quantum state is sent. However, once the eavesdropper intercepts the transmitted particles, owing to incomplete information obtained, the eavesdropper is unable to recover the original information, and the eavesdropping behavior will be immediately detected, thus terminating communication. In this scheme, single photon and Bell states are fully utilized, and hybrid communication can effectively improve transmission efficiency, encoding capability, and quantum bit utilization. Security analysis shows that this scheme can resist common external and internal attacks such as interception/measurement replay attacks, auxiliary particle attacks, and identity impersonation attacks. The analysis of efficiency and encoding capacity shows that the transmission efficiency of this scheme is 1, the encoding capacity is 3 bits per state, and the quantum bit utilization rate is 1. Compared with other schemes, this scheme has significant advantages because it uses different particles for bidirectional authentication, making it more difficult for attackers to crack, and thus it has higher security than traditional schemes.
-
Keywords:
- quantum secure direct communication/
- mixed state/
- identity authentication/
- transmission efficiency
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] -
单光子 表示的经典信息 Bell态 表示的经典信息 $ | 0 \rangle $ 000 $ | {{\psi ^ + }} \rangle $ 010 $| 1 \rangle $ 111 $ | {{\psi ^ - }} \rangle $ 101 $ | + \rangle $ 001 $| {{\varphi ^ + }} \rangle $ 011 $ | - \rangle $ 110 $| {{\varphi ^ - }} \rangle $ 100 1 2 3 4 秘钥K 1 0 0 1 序列$ {S_n} $量子态 $ | + \rangle $ $ | 0 \rangle $ $ | 0 \rangle $ $ | + \rangle $ 合法Alice根据K
选测量基X Z Z X 合法Alice测量结果 $ | + \rangle $ $ | 0 \rangle $ $ | 0 \rangle $ $ | + \rangle $ 冒充Alice测量结果
(随机选择测量基)50%$ | + \rangle $
25%$ | 0 \rangle $
25%$ | 1 \rangle $50%$ | 0 \rangle $
25%$ | + \rangle $
25%$ | - \rangle $50%$ | 0 \rangle $
25%$ | + \rangle $
25%$ | - \rangle $50%$ | + \rangle $
25%$ | 0 \rangle $
25%$ | 1 \rangle $${\varphi }^{+}或{\varphi }^{-}$在$ {S}_{1} $中位置 1 4 5 9 11 12 15 17 18 $ \cdots $ 量子态 $ |0 \rangle $ $ | + \rangle $ $ |0 \rangle $ $ | + \rangle $ $ |- \rangle $ $ |1 \rangle $ $ |0 \rangle $ $ |- \rangle $ $ | + \rangle $ $ \cdots $ 共享秘钥K 1 0 0 1 Alice公布位置L 4 5 15 18 根据K选择测量基 X Z Z X 合法Bob测量结果 $ | + \rangle $ $ |0 \rangle $ $ |0 \rangle $ $ | + \rangle $ 冒充Bob 测量结果 $50{\text{%}} | + \rangle $
$25{\text{%}} |0 \rangle $
$25{\text{%}} |1 \rangle $$ 50{\text{%}}|0 \rangle $
$25{\text{%}} | + \rangle $
$25{\text{%}} |- \rangle $$ 50{\text{%}}|0 \rangle $
$ 25{\text{%}} | + \rangle $
$25{\text{%}} |- \rangle $$50{\text{%}} | + \rangle $
$25{\text{%}} |0 \rangle $
$25{\text{%}} |1 \rangle $1 2 3 4 5 6 7 8 秘密信息M 010 111 011 110 011 110 000 100 混合态序列${S}_{1-S}$量子态 $ \left| {{\psi ^ + }} \right\rangle $ $ \left| 1 \right\rangle $ $\left| {{\varphi ^ + }} \right\rangle $ $ \left| - \right\rangle $ $\left| {{\varphi ^ + }} \right\rangle $ $ \left| - \right\rangle $ $ \left| 0 \right\rangle $ $\left| {{\varphi ^ - }} \right\rangle $ Alice公布的测量基 Bell基 Z基 Bell基 X基 Bell基 X基 Z基 Bell基 Bob测量结果 $ \left| {{\psi ^ + }} \right\rangle $ $ \left| 1 \right\rangle $ $\left| {{\varphi ^ + }} \right\rangle $ $ \left| - \right\rangle $ $\left| {{\varphi ^ + }} \right\rangle $ $ \left| - \right\rangle $ $ \left| 0 \right\rangle $ $\left| {{\varphi ^ - }} \right\rangle $ 解码得信息M 010 111 011 110 011 110 000 100 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31]
Catalog
Metrics
- Abstract views:2331
- PDF Downloads:71
- Cited By:0