Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Yang Zhang-Zhang, Liu Li, Wan Zhi-Tao, Fu Jia, Fan Qun-Chao, Xie Feng, Zhang Yi, Ma Jie
    PDF
    HTML
    Get Citation
    • Halides play an important role in atmospheric chemistry, corrosion of steel, and also in controlling the abundance of O 3. Moreover high-precision vibrational energy spectra contain a large amount of quantum information of molecular system and are basic data for people to understand and manipulate molecules. At present, ab-initio methods have achieved many calculation results of the potential energy surfaces and corresponding vibrational energy of molecules, but they still face challenges in terms of accuracy and computational cost. Recently, data-driven machine learning methods have demonstrated very strong capability of extracting high-dimensional functional relationships from massive data and have been widely used in spectrum studies. Therefore, a theoretical approach to combining ab-initio method and machine learning algorithm is presented here to predict the vibrational energy of diatomic systems, which improves the accuracy and simultaneously reduces the computational cost. Firstly, the vibrational energy levels of 42 diatomic molecules are obtained by using different CCSD(T) methods to calculate the configurations from simple to complex and the corresponding experimental results are also collected. A machine learning algorithm is then used to learn the difference between the CCSD(T) method calculated vibrational results and the experimental vibrational results, and a high-dimensional error function is finally constructed to improve the original CCSD(T) computational accuracy. The results for HF, HBr, H 35Cl and Na 35Cl (they did not appear in the training set) and other halogen molecules show that compared with the CCSD(T)/cc-pV5Z calculation method alone, the present method reduces the prediction error by more than 50% and the computational cost by nearly one order of magnitude. It is worth noting that the method proposed in this paper is not only limited to the energy level prediction of diatomic systems, but also applicable in other fields where data can be obtained by ab initio methods and experimental methods simultaneously, such as the energy spectrum properties of macromolecular systems.
          Corresponding author:Fu Jia,fujiayouxiang@126.com; Fan Qun-Chao,fanqunchao@sina.com;
        • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 11904295), the Program of Science and Technology of Sichuan Province of China (Grant No. 2021ZYD0050), and the Open Research Found Program of Collaborative Innovation Center of Extreme Optics (Grant No. KF2020003).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

        [54]

        [55]

        [56]

        [57]

        [58]

        [59]

      • $ \nu $ H2 HF DF H35Cl LiH Li2
        0 2179.69 2050.77 1490.30 1483.88 705.08 175.032
        1 6341.75 6012.19 4396.97 4369.86 2078.45 521.26
        2 10268.40 9801.57 7212.12 7151.86 3406.08 862.26
        3 13694.54 13423.60 9937.66 9830.66 4688.81 1198.00
        4 17433.22 16882.45 12575.33 12406.71 5927.55 1528.41
        ${\text{H}}{}^{{\text{79}}}{\text{Br}}$ N2 BF ClF NO CN
        0 1314.65 1175.77 742.00 191.77 948.50 1031.20
        1 3873.57 3505.69 2208.00 573.06 2824.50 3073.60
        2 6341.99 5806.93 3651.00 951.35 4627.30 5089.70
        3 8719.91 8079.47 5072.00 1326.60 6491.90 7079.50
        4 11007.01 10323.28 6470.00 1698.90 8283.50 9042.80
        Br2 BCl CP CS SiCl O2
        0 162.38 416.83 618.19 709.00 267.25 664.69
        1 485.53 1242.63 1844.32 2117.00 798.54 2326.53
        2 806.51 2058.80 3056.76 3515.00 1325.50 3968.09
        3 1125.29 2865.49 4255.53 4902.00 1847.50 5589.60
        4 1441.88 3662.85 5440.62 6278.00 2365.50 7191.32
        12C16O 13C16O 14C16O 12C17O 13C17O 14C17O
        0 1081.77 1057.72 1036.74 1068.03 1043.66 1022.39
        1 3225.04 3153.79 3091.61 3184.32 3112.11 3049.05
        2 6341.83 5224.54 5122.15 5274.81 5155.92 5052.07
        3 7432.21 7270.04 7128.44 7339.54 7175.14 7031.50
        4 9496.24 9290.35 9110.52 9378.60 9169.83 8987.38
        SO SiC SiN 24Mg16O Na35Cl NaLi
        0 576.94 475.47 574.06 391.14 181.90 127.83
        1 1740.42 1416.67 1712.46 1165.88 543.05 381.22
        2 2916.75 2344.87 2837.85 1930.32 900.70 631.10
        3 4105.98 3260.07 3950.20 2684.16 1254.89 877.79
        4 5308.16 4162.27 5049.47 3427.11 1605.65 1121.12
        MgH AlO AlF Al Cl SiO BH
        0 739.11 488.00 394.60 246.60 619.20 1171.06
        1 2171.09 1453.40 1180.00 734.10 1848.90 3440.30
        2 3539.79 2404.76 1956.10 1217.30 3066.50 5614.11
        3 4841.14 3342.19 2722.30 1698.00 4272.30 7694.16
        4 6070.50 4265.42 3480.20 2175.20 5466.10 9684.16
        DownLoad: CSV

        输入变量$X$ 目标变量$\hat Y:{E_\nu }$ 文献[59] $E_\nu ^{{\text{this work}}}$
        $ E_\nu ^{\text{T}} $ $ E_\nu ^{\text{Q}} $
        171.702 172.1623 175.03 174.059 178.903
        511.410 513.631 521.26 518.255 531.853
        846.059 849.982 862.26 857.832 878.969
        1175.599 1181.177 1198.00 1191.397 1173.096
        1499.987 1507.169 1528.41 1519.330 1496.133
        1819.161 1827.906 1853.46 1841.991 1906.993
        2133.063 2143.328 2173.07 2159.852 2106.362
        2441.620 2453.368 2487.19 2471.991 2438.853
        2744.753 2757.954 2795.74 2778.334 2693.961
        3042.368 3057.002 3090.64 3072.703 3102.89
        3334.377 3350.421 3395.80 3373.920 3369.871
        3620.669 3638.108 3687.11 3663.159 3630.759
        3901.126 3919.951 3972.43 3946.618 4009.308
        4175.619 4195.927 4251.73 4223.997 4297.662
        4444.003 4465.597 4524.78 4495.270 4487.998
        4706.126 4729.113 4791.43 4760.610 4530.406
        4961.805 4986.210 5051.53 5018.559 4962.152
        5210.858 5236.706 5304.93 5270.268 5225.061
        5453.074 5480.402 5551.4 5514.831 5506.045
        5688.224 5717.081 6790.71 5753.539 5701.189
        5916.059 5946.503 6022.66 5983.959 6022.425
        注: 文献[59]的数据和$E_\nu ^{{\text{this work}}}$不作为输入数据.
        DownLoad: CSV

        HF$ \nu $ ${E_\nu }$ ${\delta _{{\text{this work}}}}$ $E_\nu ^{{\text{this work}}}$ $\delta _\nu ^{\text{Q}}$ $E_\nu ^{\text{Q}} $
        0 2050.771 0.04093 2134.714 0.01200 2075.378
        1 6012.194 0.05485 6341.983 0.01562 6106.099
        2 9801.566 0.03044 10099.884 0.01694 9967.644
        3 13423.603 0.001166 13407.950 0.01797 13664.780
        4 16882.448 0.004083 16951.383 0.01893 17202.024
        5 20181.824 0.0005710 20193.347 0.01990 20583.515
        6 23324.620 0.008118 23135.267 0.02093 23812.920
        7 26313.146 0.01637 25882.423 0.02205 26893.357
        8 29148.927 0.01435 28730.690 0.02327 29827.322
        9 31832.367 0.01963 31207.435 0.02464 32616.648
        10 34362.909 0.004397 34211.806 0.02618 35262.441
        11 36738.405 0.01714 36108.527 0.02794 37764.995
        12 38954.943 0.01769 38265.658 0.03000 40123.716
        13 41006.593 0.01487 40396.799 0.03244 42337.026
        14 42884.443 0.01483 42248.544 0.03539 44402.227
        15 44576.005 0.01264 44012.508 0.03902 46315.354
        16 46064.207 0.009428 45629.921 0.04357 48071.083
        17 47325.663 0.006234 47030.644 0.04938 49662.648
        18 48328.541 0.0003463 48311.807 0.05697 51081.932
        19 49026.508 0.005459 49294.146 0.06717 52319.807
        HBr$ \nu $ ${E_\nu }$ ${\delta _{{\text{this work}}}}$ $E_\nu ^{{\text{this work}}}$ $\delta _\nu ^{\text{Q}}$ $E_\nu ^{\text{Q}}$
        0 1314.653 0.02080 1341.993 0.01314 1331.929
        1 3873.566 0.06601 4129.243 0.01762 3941.805
        2 6341.990 0.01130 6413.868 0.01935 6464.682
        3 8719.913 0.01104 8816.207 0.02093 8902.436
        4 11007.012 0.01316 11151.888 0.02259 11255.684
        5 13202.585 0.01387 13385.700 0.02437 13524.341
        6 15305.471 0.01795 15580.146 0.02630 15707.958
        7 17313.970 0.002268 17274.704 0.02841 17805.806
        H35Cl $ \nu $ ${E_\nu }$ ${\delta _{{\text{this work}}}}$ $E_\nu ^{{\text{this work}}}$ $\delta _\nu ^{\text{Q}}$ $E_\nu ^{\text{Q}}$
        0 1483.881 0.01052 1468.276 0.01050 1468.294
        1 4369.857 0.01009 4413.952 0.003299 4384.273
        2 7151.864 0.009209 7217.724 0.006637 7199.330
        3 9830.658 0.01910 10018.462 0.008566 9914.869
        4 12406.710 0.004748 12465.616 0.01028 12534.187
        5 14880.156 0.002706 14839.892 0.01250 15066.200
        6 17250.746 0.002461 17208.284 0.01563 17520.446
        7 19517.778 0.003098 19457.320 0.01906 19889.759
        8 21680.003 0.01529 21348.516 0.02231 22163.716
        9 23735.517 0.01306 23425.579 0.02561 24343.381
        10 25681.608 0.005119 25813.072 0.02871 26418.895
        11 27514.609 0.009392 27256.180 0.03154 28382.336
        12 29229.647 9.641 E-05 29226.829 0.03378 30217.072
        13 30820.291 0.008591 30555.509 0.03507 31901.224
        14 32278.144 0.004052 32408.930 0.03476 33400.117
        Na35Cl $ \nu $ ${E_\nu }$ ${\delta _{{\text{this work}}}}$ $E_\nu ^{{\text{this work}}}$ $\delta _\nu ^{\text{Q}}$ $E_\nu ^{\text{Q}}$
        0 181.899 0.008954 180.270 0.04204 174.252
        1 543.050 0.01550 534.633 0.03299 525.138
        2 900.702 0.007215 894.204 0.03107 872.718
        3 1254.890 0.01144 1240.538 0.03014 1217.063
        4 1605.649 0.005573 1596.700 0.02955 1558.204
        5 1953.013 0.008120 1937.155 0.02912 1896.150
        6 2297.016 0.005233 2284.995 0.02877 2230.937
        7 2637.692 0.001172 2640.784 0.02847 2562.592
        8 2975.075 0.01092 2942.574 0.02821 2891.142
        9 3309.198 0.001195 3305.243 0.02798 3216.614
        10 3640.093 0.01084 3600.653 0.02776 3539.057
        11 3967.795 0.001966 3959.992 0.02755 3858.485
        12 4292.334 0.002171 4283.017 0.02735 4174.918
        DownLoad: CSV

        Na35Cl $ \nu $ ${E_\nu }$ ${\delta _{{\text{this work}}}}$ $E_\nu ^{{\text{this work}}}$ $\delta _\nu ^{\text{Q}}$ $E_\nu ^{\text{Q}}$
        13 4613.743 0.01077 4564.070 0.02717 4488.398
        14 4932.054 0.002617 4919.147 0.02699 4798.950
        15 5247.298 0.01274 5180.428 0.02681 5106.596
        16 5559.506 0.009977 5504.042 0.02665 5411.364
        17 5868.710 0.02119 5744.339 0.02648 5713.289
        18 6174.940 0.003747 6198.078 0.02632 6012.398
        19 6478.226 0.007659 6428.612 0.02617 6308.719
        20 6778.599 0.0008396 6772.914 0.02601 6602.272
        DownLoad: CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

        [54]

        [55]

        [56]

        [57]

        [58]

        [59]

      • [1] Song Rui, Liu Xue-Mei, Wang Hai-Bin, Lü Hao, Song Xiao-Yan.Hardness prediction of WC-Co cemented carbide based on machine learning model. Acta Physica Sinica, 2024, 73(12): 126201.doi:10.7498/aps.73.20240284
        [2] Zhang Xu, Ding Jin-Min, Hou Chen-Yang, Zhao Yi-Ming, Liu Hong-Wei, Liang Sheng.Machine learning based laser homogenization method. Acta Physica Sinica, 2024, 73(16): 164205.doi:10.7498/aps.73.20240747
        [3] Zhang Jia-Hui.Machine learning forin silicoprotein research. Acta Physica Sinica, 2024, 73(6): 069301.doi:10.7498/aps.73.20231618
        [4] Ouyang Xin-Jian, Zhang Yan-Xing, Wang Zhi-Long, Zhang Feng, Chen Wei-Jia, Zhuang Yuan, Jie Xiao, Liu Lai-Jun, Wang Da-Wei.Modeling ferroelectric phase transitions with graph convolutional neural networks. Acta Physica Sinica, 2024, 73(8): 086301.doi:10.7498/aps.73.20240156
        [5] Zhang Yi-Fan, Ren Wei, Wang Wei-Li, Ding Shu-Jian, Li Nan, Chang Liang, Zhou Qian.Machine learning combined with solid solution strengthening model for predicting hardness of high entropy alloys. Acta Physica Sinica, 2023, 72(18): 180701.doi:10.7498/aps.72.20230646
        [6] Guo Wei-Chen, Ai Bao-Quan, He Liang.Reveal flocking phase transition of self-propelled active particles by machine learning regression uncertainty. Acta Physica Sinica, 2023, 72(20): 200701.doi:10.7498/aps.72.20230896
        [7] Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang.Application of machine learning in cosmic ray particle identification. Acta Physica Sinica, 2023, 72(14): 140202.doi:10.7498/aps.72.20230334
        [8] Luo Qi-Rui, Shen Yi-Fan, Luo Meng-Bo.Computer simulation and machine learning of polymer collapse and critical adsorption phase transitions. Acta Physica Sinica, 2023, 72(24): 240502.doi:10.7498/aps.72.20231058
        [9] Guan Xing-Yue, Huang Heng-Yan, Peng Hua-Qi, Liu Yan-Hang, Li Wen-Fei, Wang Wei.Machine learning in molecular simulations of biomolecules. Acta Physica Sinica, 2023, 72(24): 248708.doi:10.7498/aps.72.20231624
        [10] Kang Jun-Feng, Feng Song-Jiang, Zou Qian, Li Yan-Jie, Ding Rui-Qiang, Zhong Quan-Jia.Machine learning based method of correcting nonlinear local Lyapunov vectors ensemble forecasting. Acta Physica Sinica, 2022, 71(8): 080503.doi:10.7498/aps.71.20212260
        [11] Zhang Jia-Wei, Yao Hong-Bo, Zhang Yuan-Zheng, Jiang Wei-Bo, Wu Yong-Hui, Zhang Ya-Ju, Ao Tian-Yong, Zheng Hai-Wu.Self-powered sensing based on triboelectric nanogenerator through machine learning and its application. Acta Physica Sinica, 2022, 71(7): 078702.doi:10.7498/aps.71.20211632
        [12] Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng.Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, 2021, 70(14): 140306.doi:10.7498/aps.70.20210831
        [13] Chen Jiang-Zhi, Yang Chen-Wen, Ren Jie.Machine learning based on wave and diffusion physical systems. Acta Physica Sinica, 2021, 70(14): 144204.doi:10.7498/aps.70.20210879
        [14] Yang Zi-Xin, Gao Zhang-Ran, Sun Xiao-Fan, Cai Hong-Ling, Zhang Feng-Ming, Wu Xiao-Shan.High critical transition temperature of lead-based perovskite ferroelectric crystals: A machine learning study. Acta Physica Sinica, 2019, 68(21): 210502.doi:10.7498/aps.68.20190942
        [15] Zheng Xiao-Feng, Fan Qun-Chao, Sun Wei-Guo, Fan Zhi-Xiang, Zhang Yi, Fu Jia, Li Bo.Full vibrational spectra of some electronic states of NaLi molecule using a difference converging method. Acta Physica Sinica, 2015, 64(20): 203301.doi:10.7498/aps.64.203301
        [16] Han Xiao-Qin.The ab initio and potential energy curve of SiF2(1A1). Acta Physica Sinica, 2014, 63(23): 233101.doi:10.7498/aps.63.233101
        [17] Han Xiao-Qin, Xiao Xia-Jie, Liu Yu-Fang.The ab initio potential energy curve of HNO(1A’). Acta Physica Sinica, 2013, 62(19): 193101.doi:10.7498/aps.62.193101
        [18] Zhang Yi, Sun Wei-Guo, Fu Jia, Fan Qun-Chao, Feng Hao, Li Hui-Dong.Investigations of vibrational levels and dissociation energies of diatomic systems using a variational algebraic method. Acta Physica Sinica, 2012, 61(13): 133301.doi:10.7498/aps.61.133301
        [19] Ji Guang-Fu, Zhang Yan-Li, Cui Hong-Lingi, Li Xiao-Feng, Zhao Feng, Meng Chuan-Min, Song Zhen-Fei.Ab initio simulation on thermodynamic equation of state of fcc aluminum under high temperature and pressure. Acta Physica Sinica, 2009, 58(6): 4103-4108.doi:10.7498/aps.58.4103
        [20] Liang Xiao-Rui, Zhao Bo, Zhou Zhi-Hua.Ab initio study on the second-order nonlinear optical properties of some coumarin derivatives. Acta Physica Sinica, 2006, 55(2): 723-728.doi:10.7498/aps.55.723
      Metrics
      • Abstract views:2810
      • PDF Downloads:62
      • Cited By:0
      Publishing process
      • Received Date:13 October 2022
      • Accepted Date:29 December 2022
      • Available Online:17 February 2023
      • Published Online:05 April 2023

        返回文章
        返回
          Baidu
          map