\begin{document}$\Sigma \left( {{0_{00}}, {v_2} = 1} \right) \leftarrow \Sigma \left( {{1_{11}}} \right)$\end{document}, \begin{document}$\Sigma \left( {{0_{00}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{11}}} \right)$\end{document}, \begin{document}$\Sigma \left( {{1_{01}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{10}}} \right)$\end{document} and \begin{document}$\Sigma \left( {{1_{01}}, {v_2} = 1} \right) $\end{document}\begin{document}$\leftarrow \Pi \left( {{1_{01}}} \right) $\end{document}. The first two subbands belong to the otho- species of Ar-D2O, while the latter two belong to the para- species. The observed rovibrational transitions together with the previously reported pure rotational spectra having the common lower vibrational sub-states are analyzed by a weighted least-squares fitting using a pseudo-diatomic effective Hamiltonian. An experimental error of 10 kHz for the far-infrared transitions and 0.001 cm–1 for the infrared transitions are set in the global fitting when using Pickett’s program SPFIT, respectively. The molecular constants including vibrational substate energy, rotational and centrifugal distortion constants, and Coriolis coupling constant, are determined accurately. The previous results for the \begin{document}$\Pi \left( {{1_{11}}, {v_2} = 0} \right)$\end{document} substate are found to be likely incorrect. The energy of the \begin{document}$\Sigma \left( {{0_{00}}, {v_2} = 1} \right)$\end{document}and \begin{document}$\Sigma \left( {{1_{01}}, {v_2} = 1} \right)$\end{document}substates are determined experimentally for the first time. The band origin of Ar-D2O in the D2O v2 bending mode region is determined to be 1177.92144(13) cm–1, which is a red shift about 0.458 cm–1 compared with the head of D2O monomer. The experimental vibrational substate energy is compared with its theoretical value based on a four-dimensional intermolecular potential energy surface which includes the normal coordinate of the D2O v2 bending mode. The experimental and theoretical results are in good agreement with each other. But the calculated energy levels are generally higher than the experimental values, so, there is still much room for improving the theoretical calculations."> - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Li Xiang, Liu Yun, Zhu Tian-Xin, Duan Chuan-Xi
    PDF
    HTML
    Get Citation
    • The intermolecular interactions involving the water molecule play important roles in many fields of physics, chemistry, and biology. High-resolution spectroscopy of Van der Waals complexes formed by a rare gas atom and a water molecule can provide a wealth of information about these intermolecular interactions. The precise experimental data can be used to test the accuracies and efficiencies of various theoretical methods of constructing the intermolecular potential energy surfaces and calculating the bound states. In this work, the high-resolution infrared absorption spectrum of the Ar-D 2O complex in the v 2bending region of D 2O is measured by using an external cavity quantum cascade laser. A segmented rapid-scan data acquisition method is employed. The Ar-D 2O complex is generated in a slit supersonic jet expansion by passing Ar gas through a vessel containing liquid D 2O. Four new rovibrational subbands are assigned in the spectral range of 1150–1190 cm –1, namely $\Sigma \left( {{0_{00}}, {v_2} = 1} \right) \leftarrow \Sigma \left( {{1_{11}}} \right)$ , $\Sigma \left( {{0_{00}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{11}}} \right)$ , $\Sigma \left( {{1_{01}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{10}}} \right)$ and $\Sigma \left( {{1_{01}}, {v_2} = 1} \right) $ $\leftarrow \Pi \left( {{1_{01}}} \right) $ . The first two subbands belong to the otho- species of Ar-D 2O, while the latter two belong to the para- species. The observed rovibrational transitions together with the previously reported pure rotational spectra having the common lower vibrational sub-states are analyzed by a weighted least-squares fitting using a pseudo-diatomic effective Hamiltonian. An experimental error of 10 kHz for the far-infrared transitions and 0.001 cm –1for the infrared transitions are set in the global fitting when using Pickett’s program SPFIT, respectively. The molecular constants including vibrational substate energy, rotational and centrifugal distortion constants, and Coriolis coupling constant, are determined accurately. The previous results for the $\Pi \left( {{1_{11}}, {v_2} = 0} \right)$ substate are found to be likely incorrect. The energy of the $\Sigma \left( {{0_{00}}, {v_2} = 1} \right)$ and $\Sigma \left( {{1_{01}}, {v_2} = 1} \right)$ substates are determined experimentally for the first time. The band origin of Ar-D 2O in the D 2O v 2bending mode region is determined to be 1177.92144(13) cm –1, which is a red shift about 0.458 cm –1compared with the head of D 2O monomer. The experimental vibrational substate energy is compared with its theoretical value based on a four-dimensional intermolecular potential energy surface which includes the normal coordinate of the D 2O v 2bending mode. The experimental and theoretical results are in good agreement with each other. But the calculated energy levels are generally higher than the experimental values, so, there is still much room for improving the theoretical calculations.
          Corresponding author:Duan Chuan-Xi,duanchx@mail.ccnu.edu.cn
        • Funds:Project supported by the National Natural Science Foundation of China (Grant No.11574107).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

      • Assignment $\Pi \left( {{1_{01}}} \right) \leftarrow \Sigma \left( {{1_{01}}} \right)$b $\Pi \left( {{1_{10}}} \right) \leftarrow \Sigma \left( {{1_{01}}} \right)$b $\Sigma \left( {{1_{11}}} \right) \leftarrow \Sigma \left( {{0_{00}}} \right)$c $\Pi \left( {{1_{11}}} \right) \leftarrow \Sigma \left( {{0_{00}}} \right)$c
        P(15) 593671.56(–85)
        P(14) 594125.10(89)
        P(13) 594617.34(63)
        P(12) 595159.22(–50)
        P(11) 595761.68(–81)
        P(10) 596438.86(–22)
        P(9) 286151.60(1) 380426.47(0) 597208.18(5)
        P(8) 290294.16(–2) 383658.52(1) 598095.30(–5)
        P(7) 294584.78(0) 387168.84(0) 599137.41(19)
        P(6) 299029.93(–1) 390958.16(1) 600387.39(59) 529456.94(–55)
        P(5) 303635.47(1) 395026.72(2) 601924.22(95) 538944.20(–44)
        P(4) 308406.24(0) 399374.40(0) 603862.02(–15) 548068.80(41)
        P(3) 313346.09(–1) 404000.86(0) 606374.16(–75)
        P(2) 318457.69(–2) 408905.45(1) 609688.76(68) 564472.24(–33)
        P(1) 614050.94(–94)
        Q(1) 329209.16(0) 419686.25(0) 576854.64(14)
        Q(2) 329225.88(0) 419967.95(2) 576845.60(10)
        Q(3) 329249.43(0) 420389.80(–2) 576832.02(8)
        Q(4) 329278.03(0) 420951.17(1) 576813.78(2)
        Q(5) 329309.36(0) 421650.90(0) 576790.88(1)
        Q(6) 329340.61(–1) 422487.66(1) 576763.12(–4)
        Q(7) 329368.59(0) 423459.73(0) 576730.48(–3)
        Q(8) 329389.75(1) 424565.04(0) 576692.81(1)
        Q(9) 329400.26(0) 425801.07(0) 586649.90(–1)
        Q(10) 576601.72(3)
        Q(11) 576548.01(–4)
        Q(12) 576488.93(5)
        Q(13) 576424.08(–2)
        Q(14)
        R(0) 334830.48(0) 425278.22(1) 626461.13((64) 581244.48(–50)
        R(1) 340629.81(2) 431284.54(–2) 634322.63(–7)
        R(2) 346594.45(1) 437562.59(–1) 642975.68(–31) 587181.98(–24)
        R(3) 352719.13(1) 444110.37(1) 652188.92(–61) 589211.88(44)
        R(4) 358997.30(0) 450925.49(–2) 661789.14(–50) 590861.04(70)
        R(5) 365421.36(5) 458005.35(–1) 671655.74(25) 592246.68(33)
        R(6) 371982.39(–4) 681704.80(21) 593449.38(99)
        R(7) 378671.09(–2) 691879.92(–12) 594518.75(–43)
        R(8) 385477.11(4) 702141.48(–1) 595494.34(–90)
        R(9) 392389.53(–2) 712459.36(2) 596401.33(–39)
        R(10) 722811.14(14) 597256.58(–2)
        R(11) 733178.48(–15) 598073.14(10)
        R(12) 598861.05(8)
        R(13) 599628.49(43)
        R(14) 600380.64(31)
        R(15) 601122.42(7)
        R(16) 601856.02(–96)
        R(17) 602584.84(46)
        a括号中的数字为 (实验值-计算值)×102;
        b实验观测谱线来自于文献[2];
        c实验观测谱线来自于文献[7].
        DownLoad: CSV

        Assignment $\Sigma \left( {{0_{00}}} \right) \leftarrow \Sigma \left( {{1_{11}}} \right)$ $\Sigma \left( {{0_{00}}} \right) \leftarrow \Pi \left( {{1_{11}}} \right)$ $\Sigma \left( {{1_{01}}} \right) \leftarrow \Pi \left( {{1_{10}}} \right)$ $\Sigma \left( {{1_{01}}} \right) \leftarrow \Pi \left( {{1_{01}}} \right)$
        P(13) 1157.9570(5)
        P(12) 1157.9810(0)
        P(11) 1158.0070(4)
        P(10) 1158.0340(3) 1164.6769(–2)
        P(9) 1158.0627(0) 1161.7230(–17) 1164.9049(6)
        P(8) 1158.0939(–3) 1161.9839(2) 1165.1281(–3)
        P(7) 1158.1287(–2) 1162.2345(–1) 1165.3492(3)
        P(6) 1158.1681(–1) 1162.4770(–2) 1165.5657(2)
        P(5) 1158.2135(–3) 1162.7108(–7) 1165.7774(–5)
        P(4) 1158.2685(2) 1162.9371(–2) 1165.9857(–1)
        P(3) 1158.3354(–2) 1163.1541(–5) 1166.1901(11)
        P(2) 1158.4209(–4) 1163.3632(–1) 1166.3873(1)
        P(1) 1158.5331(–1) 1166.5815(10)
        Q(1) 1163.7504(2)
        Q(2) 1163.7416(1)
        Q(3) 1163.7289(3)
        Q(4) 1158.6820(–3) 1163.7117(4)
        Q(5) 1158.6835(–3) 1163.6902(3)
        Q(6) 1158.6853(–2) 1163.6645(3) 1166.7712(0)
        Q(7) 1158.6874(–1) 1163.6348(4) 1166.7728(–1)
        Q(8) 1158.6899(0) 1163.6005(0) 1166.7752(0)
        Q(9) 1158.6927(1) 1163.5627(1) 1166.7782(0)
        Q(10) 1158.6957(1) 1163.5207(–1) 1166.7821(1)
        Q(11) 1158.6991(1) 1163.4753(1) 1166.7868(0)
        Q(12) 1158.7028(0) 1163.4260(0) 1166.7927(0)
        Q(13) 1158.7070(1) 1163.3730(–3)
        Q(14) 1163.3171(–1)
        R(1) 1157.5857(8) 1167.1275(0)
        R(2) 1157.6960(2) 1159.3539(–3) 1164.2752(0) 1167.2987(–4)
        R(3) 1157.7804(3) 1159.6412(0) 1164.4305(–5) 1167.4657(2)
        R(4) 1157.8455(0) 1159.9463(1) 1164.5782(2) 1167.6264(0)
        R(5) 1157.8977(2) 1164.7160(0) 1167.7819(–4)
        R(6) 1157.9401(0) 1164.8454(5) 1167.9332(0)
        R(7) 1157.9762(2) 1164.9655(5) 1168.0803(10)
        R(8) 1165.0767(6) 1168.2210(2)
        R(9) 1165.1766(–17) 1168.3581(1)
        R(10) 1158.0580(0) 1163.2720(2) 1168.4914(3)
        R(11) 1158.0795(–5) 1168.6204(1)
        R(12) 1158.0994(–6) 1168.7455(–4)
        R(13) 1168.8687(5)
        R(14) 1158.1360(–1)
        R(15) 1158.1528(2)
        a括号中的数字为 (实验值-计算值) ×104.
        DownLoad: CSV

        Parameter Ground state D2O (v2= 1) excited
        $\Sigma \left( {{0_{00}}} \right)$ Ref. [7] This work This work
        v/cm–1 1177.92144 (32)
        $B$/MHz 2795.93 2795.86781(44) 2797.88(11)
        $D$/kHz 78.137 77.7551(54) 77.16(46)
        $H$/Hz –2.406 –2.930 (19) –2.930(19)b
        $\Sigma \left( {{1_{11}}} \right)$ Ref. [7] This work Ref. [11]
        v/cm–1) 20.669081(11) 20.6690759(17) 1199.84075(22)
        $B$/MHz) 2808.409(30) 2808.36099(61) 2835.137(51)
        $D$/kHz) 136.24(89) 136.328(14) 137.005(33)
        $H$/Hz) –23.3(69) –20.27(10)
        $L$/Hz) –0.084(18) –0.09110(29)
        $\Pi \left( {{1_{11}}} \right)$ Ref. [7] This work Ref. [11]
        v/cm–1) 19.335135(11) 19.2419471 (16) 1198.12738(22)
        $B$/ MHz 2793.526(22) 2793.46903(54) 2767.084(51)
        ${D^{\text{e}}}$/kHz 13.84(74) 13.308(12) 20.806(33)
        ${D^{\text{f}}}$/ kHz 79.06(33) 78.7624(73)
        $ {H^{\text{e}}} $/Hz –1.49(58) –17.565(94)
        $ {H^{\text{f}}} $/Hz –1.7(13) –1.902(27)
        ${L^{\text{e}}}$/Hz 0.140(14) 0.14473(24)
        $\beta $/MHz 5141.09(12) 3635.3021(12) 3509.22(19)
        $\Sigma \left( {{1_{01}}} \right)$ Ref. [2] This work This work
        v/cm–1 1177.74889(26)
        $B$/MHz 2729.114(10) 2729.11326(75) 2734.85(98)
        $D$/kHz 52.96(24) 52.965(19) 53.90(42)
        $H$/Hz –13.5(17) –13.40(13) –13.40(13)
        $\Pi \left( {{1_{01}}} \right)$ Ref. [2] This work Ref. [12]
        v/cm–1 10.9809467(18) 10.9809468(17) 1189.41215(11)
        ${B^{\text{e}}}$/MHz 2815.2130(92) 2815.21185(76)
        ${B^{\text{f}}}$/MHz 2733.497(12) 2742.423 (66)
        ${D^{\text{e}}}$/kHz 110.24(18) 110.229(16)
        ${D^{\text{f}}}$/kHz 78.66(31) 78.665(28) 75.65(25)
        $ {H^{\text{e}}} $/Hz 23.2(11) 23.228(96)
        $ {H^{\text{f}}} $/Hz 5.0(23) 5.07(21)
        $\Pi \left( {{1_{10}}} \right)$ Ref. [2] This work Ref. [11]
        v/cm–1 13.9945245(20) 13.9945245(19) 1192.86911(21)
        ${B^{\text{e}}}$/MHz 2866.584(19) 2866.5846(12) 2855.13(60)
        ${B^{\text{f}}}$/MHz 2799.615(18) 2799.6154(11) 2793.37(19)
        ${D^{\text{e}}}$/kHz 61.65(90) 61.646(40) 47.97(79)
        ${D^{\text{f}}}$/kHz 63.21(68) 63.211(30) 35.08(20)
        $ {H^{\text{e}}} $/Hz –32(13) –31.95(37)
        $ {H^{\text{f}}} $/Hz –22.2(74) –22.22(22)
        a括号中的数字为拟合标准偏差;
        b固定在基态值上.
        DownLoad: CSV

        v2=0 D2Ov2=1 excited
        Exp. Theo.c Exp.-Theo. Exp. Theo.c Exp.-Theo.
        $\Pi \left( {{1_{11}}} \right)$a 19.2419 19.4189 –0.177 20.2996 20.4349 –0.1353
        $\Sigma \left( {{1_{11}}} \right)$a 20.6691 20.9706 –0.3015 21.3633 22.0928 –0.6647
        $\Pi \left( {{1_{01}}} \right)$b 10.9809 10.9785 0.0024 11.6633 11.6329 0.0304
        $ \Pi \left( {{1_{10}}} \right) $b 13.9945 14.4571 –0.4624 15.1202 15.4173 –0.2971
        a$\Pi \left( {{1_{11}}} \right)$和$\Sigma \left( {{1_{11}}} \right)$相对于$\Sigma \left( {{0_{00}}} \right)$的能级间隔;
        b$\Pi \left( {{1_{01}}} \right)$和$\Pi \left( {{1_{10}}} \right)$相对于$\Sigma \left( {{1_{01}}} \right)$的能级间隔;
        c理论计算值来自于文献[33] .
        DownLoad: CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

      • [1] Fan Jun-Yu, Gao Nan, Wang Peng-Ju, Su Yan.Intermolecular interactions and thermodynamic properties of LLM-105. Acta Physica Sinica, 2024, 73(4): 046501.doi:10.7498/aps.73.20231696
        [2] Wang Hui-Yao, Wei Fu-Xian, Wu Yu-Ting, Peng Teng, Liu Jun-Hong, Wang Bo, Xiong Zu-Hong.Enhanced reverse inter-system crossing process of charge-transfer stated induced by carrier balance in exciplex-type OLEDs. Acta Physica Sinica, 2023, 72(17): 177201.doi:10.7498/aps.72.20230949
        [3] Zhao Xi, Chen Jing, Peng Teng, Liu Jun-Hong, Wang Bo, Chen Xiao-Li, Xiong Zu-Hong.Non-monotonic current dependence of intersystem crossing and reverse intersystem crossing processes in exciplex-based organic light-emitting diodes. Acta Physica Sinica, 2023, 72(16): 167201.doi:10.7498/aps.72.20230765
        [4] Liu Xiu-Cheng, Yang Zhi, Guo Hao, Chen Ying, Luo Xiang-Long, Chen Jian-Yong.Molecular dynamics simulation of thermal conductivity of diamond/epoxy resin composites. Acta Physica Sinica, 2023, 72(16): 168102.doi:10.7498/aps.72.20222270
        [5] Yuan Hong-Rui, Liu Tao, Zhu Tian-Xin, Liu Yun, Li Xiang, Chen Yang, Duan Chuan-Xi.High-resolution jet-cooled laser absorption spectra of SF6at 10.6 μm. Acta Physica Sinica, 2023, 72(6): 063301.doi:10.7498/aps.72.20222285
        [6] Wang Xiao-Lu, Linghu Rong-Feng, Song Xiao-Shu, Lü Bing, Yang Xiang-Dong.Interactional potential of helium atom and hydrogen halide molecules. Acta Physica Sinica, 2013, 62(16): 163101.doi:10.7498/aps.62.163101
        [7] Sun Wei-Feng, Wang Xuan.Molecular dynamics simulation study of polyimide/copper-nanoparticle composites. Acta Physica Sinica, 2013, 62(18): 186202.doi:10.7498/aps.62.186202
        [8] Li Lin, Wang Xuan, Sun Wei-Feng, Lei Qing-Quan.Molecular dynamics simulation of polyethylene/silver-nanoparticle composites. Acta Physica Sinica, 2013, 62(10): 106201.doi:10.7498/aps.62.106201
        [9] Zhao Yan-Hong, Liu Hai-Feng, Zhang Qi-Li.Unlike-pair interactions of detonation products at high pressure and high temperature. Acta Physica Sinica, 2012, 61(23): 230509.doi:10.7498/aps.61.230509
        [10] Liu Tian-Yuan, Sun Cheng-Lin, Li Zuo-Wei, Zhou Mi.Raman spectroscopy study on the C/H interaction between benzene and chloroform. Acta Physica Sinica, 2012, 61(10): 107801.doi:10.7498/aps.61.107801
        [11] Wang Jie-Min, Sun Jin-Feng.Multireference configuration interaction study on spectroscopic parameters and molecular constants of AsN(X1 +) radical. Acta Physica Sinica, 2011, 60(12): 123103.doi:10.7498/aps.60.123103
        [12] Zhao Yan-Hong, Liu Hai-Feng, Zhang Gong-Mu, Zhang Guang-Cai.Pair interactions of detonation products at high pressure and high temperature. Acta Physica Sinica, 2011, 60(12): 123401.doi:10.7498/aps.60.123401
        [13] Yu Chun-Ri, Huang Shi-Zhong, Shi Shou-Hua, Cheng Xin-Lu, Yang Xiang-Dong.The influence of the CCSD (T) potential energy surface of the Ne-HBr complex on rotationally inelastic partial cross sections. Acta Physica Sinica, 2007, 56(10): 5739-5745.doi:10.7498/aps.56.5739
        [14] SHI WEI, FANG CHANG-SHUI, XU ZHI-LING, PAN QI-WEI, ZHAO XIAN, GU QIN-TIAN, XU DONG, YU JIN-ZHONG.EFFECT OF THE ELECTROSTATIC INTERACTIONS OF CHROMOPHORES ON THE MACROSCOPIC SECOND-ORDER NONLINEAR OPTICAL PROPERTIES OF THE POLYMER FILMS. Acta Physica Sinica, 2000, 49(5): 904-910.doi:10.7498/aps.49.904
        [15] FENG SHAO-XIN, JIN QING-HUA, GUO ZHEN-YA, LI BAO-HUI, DING DA-TONG.EMPIRICAL PARAMETERIZATION OF INTER-IONIC POTENTIALS FOR ALKALINE EARTH FLUORIDES. Acta Physica Sinica, 1998, 47(11): 1811-1817.doi:10.7498/aps.47.1811
        [16] YAN JIA-REN, MEI YU-PING.INTERACTION BETWEEN SOLITONS IN OPTICAL FIBERS. Acta Physica Sinica, 1996, 45(7): 1122-1129.doi:10.7498/aps.45.1122
        [17] DAI CHANG-JIAN.INTERACTIONS OF AUTOIONIZING SERIES. Acta Physica Sinica, 1994, 43(3): 369-379.doi:10.7498/aps.43.369
        [18] GUO CHANG-ZHI, HUANG YONG-ZHEN.EFFECT OF THE MODAL INTERACTION ON THE SPECTRAL LINEWIDTH IN THE NEARLY SINGLE MODE SEMICONDUCTOR LASERS. Acta Physica Sinica, 1990, 39(7): 59-65.doi:10.7498/aps.39.59-2
        [19] YU BAO-SHAN, HU DAI-LIN, SU BIN-LI.THE EFFECT OF INTERMOLECULAR INTERACTION ON THE RAMAN BAND INTENSITY. Acta Physica Sinica, 1966, 22(6): 714-718.doi:10.7498/aps.22.714
        [20] A. T. Kiang.Vibrational-Rotational Spectrum and Potential Function of a Linenr Asymmetrical Triatomlc Molecule. Acta Physica Sinica, 1944, 5(1): 49-63.doi:10.7498/aps.5.49
      Metrics
      • Abstract views:2611
      • PDF Downloads:42
      • Cited By:0
      Publishing process
      • Received Date:02 September 2022
      • Accepted Date:22 September 2022
      • Available Online:18 October 2022
      • Published Online:05 January 2023

        返回文章
        返回
          Baidu
          map