-
The intermolecular interactions involving the water molecule play important roles in many fields of physics, chemistry, and biology. High-resolution spectroscopy of Van der Waals complexes formed by a rare gas atom and a water molecule can provide a wealth of information about these intermolecular interactions. The precise experimental data can be used to test the accuracies and efficiencies of various theoretical methods of constructing the intermolecular potential energy surfaces and calculating the bound states. In this work, the high-resolution infrared absorption spectrum of the Ar-D 2O complex in the v 2bending region of D 2O is measured by using an external cavity quantum cascade laser. A segmented rapid-scan data acquisition method is employed. The Ar-D 2O complex is generated in a slit supersonic jet expansion by passing Ar gas through a vessel containing liquid D 2O. Four new rovibrational subbands are assigned in the spectral range of 1150–1190 cm –1, namely
$\Sigma \left( {{0_{00}}, {v_2} = 1} \right) \leftarrow \Sigma \left( {{1_{11}}} \right)$ ,$\Sigma \left( {{0_{00}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{11}}} \right)$ ,$\Sigma \left( {{1_{01}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{10}}} \right)$ and$\Sigma \left( {{1_{01}}, {v_2} = 1} \right) $ $\leftarrow \Pi \left( {{1_{01}}} \right) $ . The first two subbands belong to the otho- species of Ar-D 2O, while the latter two belong to the para- species. The observed rovibrational transitions together with the previously reported pure rotational spectra having the common lower vibrational sub-states are analyzed by a weighted least-squares fitting using a pseudo-diatomic effective Hamiltonian. An experimental error of 10 kHz for the far-infrared transitions and 0.001 cm –1for the infrared transitions are set in the global fitting when using Pickett’s program SPFIT, respectively. The molecular constants including vibrational substate energy, rotational and centrifugal distortion constants, and Coriolis coupling constant, are determined accurately. The previous results for the$\Pi \left( {{1_{11}}, {v_2} = 0} \right)$ substate are found to be likely incorrect. The energy of the$\Sigma \left( {{0_{00}}, {v_2} = 1} \right)$ and$\Sigma \left( {{1_{01}}, {v_2} = 1} \right)$ substates are determined experimentally for the first time. The band origin of Ar-D 2O in the D 2O v 2bending mode region is determined to be 1177.92144(13) cm –1, which is a red shift about 0.458 cm –1compared with the head of D 2O monomer. The experimental vibrational substate energy is compared with its theoretical value based on a four-dimensional intermolecular potential energy surface which includes the normal coordinate of the D 2O v 2bending mode. The experimental and theoretical results are in good agreement with each other. But the calculated energy levels are generally higher than the experimental values, so, there is still much room for improving the theoretical calculations.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] -
Assignment $\Pi \left( {{1_{01}}} \right) \leftarrow \Sigma \left( {{1_{01}}} \right)$b $\Pi \left( {{1_{10}}} \right) \leftarrow \Sigma \left( {{1_{01}}} \right)$b $\Sigma \left( {{1_{11}}} \right) \leftarrow \Sigma \left( {{0_{00}}} \right)$c $\Pi \left( {{1_{11}}} \right) \leftarrow \Sigma \left( {{0_{00}}} \right)$c P(15) 593671.56(–85) P(14) 594125.10(89) P(13) 594617.34(63) P(12) 595159.22(–50) P(11) 595761.68(–81) P(10) 596438.86(–22) P(9) 286151.60(1) 380426.47(0) 597208.18(5) P(8) 290294.16(–2) 383658.52(1) 598095.30(–5) P(7) 294584.78(0) 387168.84(0) 599137.41(19) P(6) 299029.93(–1) 390958.16(1) 600387.39(59) 529456.94(–55) P(5) 303635.47(1) 395026.72(2) 601924.22(95) 538944.20(–44) P(4) 308406.24(0) 399374.40(0) 603862.02(–15) 548068.80(41) P(3) 313346.09(–1) 404000.86(0) 606374.16(–75) P(2) 318457.69(–2) 408905.45(1) 609688.76(68) 564472.24(–33) P(1) 614050.94(–94) Q(1) 329209.16(0) 419686.25(0) 576854.64(14) Q(2) 329225.88(0) 419967.95(2) 576845.60(10) Q(3) 329249.43(0) 420389.80(–2) 576832.02(8) Q(4) 329278.03(0) 420951.17(1) 576813.78(2) Q(5) 329309.36(0) 421650.90(0) 576790.88(1) Q(6) 329340.61(–1) 422487.66(1) 576763.12(–4) Q(7) 329368.59(0) 423459.73(0) 576730.48(–3) Q(8) 329389.75(1) 424565.04(0) 576692.81(1) Q(9) 329400.26(0) 425801.07(0) 586649.90(–1) Q(10) 576601.72(3) Q(11) 576548.01(–4) Q(12) 576488.93(5) Q(13) 576424.08(–2) Q(14) R(0) 334830.48(0) 425278.22(1) 626461.13((64) 581244.48(–50) R(1) 340629.81(2) 431284.54(–2) 634322.63(–7) R(2) 346594.45(1) 437562.59(–1) 642975.68(–31) 587181.98(–24) R(3) 352719.13(1) 444110.37(1) 652188.92(–61) 589211.88(44) R(4) 358997.30(0) 450925.49(–2) 661789.14(–50) 590861.04(70) R(5) 365421.36(5) 458005.35(–1) 671655.74(25) 592246.68(33) R(6) 371982.39(–4) 681704.80(21) 593449.38(99) R(7) 378671.09(–2) 691879.92(–12) 594518.75(–43) R(8) 385477.11(4) 702141.48(–1) 595494.34(–90) R(9) 392389.53(–2) 712459.36(2) 596401.33(–39) R(10) 722811.14(14) 597256.58(–2) R(11) 733178.48(–15) 598073.14(10) R(12) 598861.05(8) R(13) 599628.49(43) R(14) 600380.64(31) R(15) 601122.42(7) R(16) 601856.02(–96) R(17) 602584.84(46) a括号中的数字为 (实验值-计算值)×102; b实验观测谱线来自于文献[2]; c实验观测谱线来自于文献[7]. Assignment $\Sigma \left( {{0_{00}}} \right) \leftarrow \Sigma \left( {{1_{11}}} \right)$ $\Sigma \left( {{0_{00}}} \right) \leftarrow \Pi \left( {{1_{11}}} \right)$ $\Sigma \left( {{1_{01}}} \right) \leftarrow \Pi \left( {{1_{10}}} \right)$ $\Sigma \left( {{1_{01}}} \right) \leftarrow \Pi \left( {{1_{01}}} \right)$ P(13) 1157.9570(5) P(12) 1157.9810(0) P(11) 1158.0070(4) P(10) 1158.0340(3) 1164.6769(–2) P(9) 1158.0627(0) 1161.7230(–17) 1164.9049(6) P(8) 1158.0939(–3) 1161.9839(2) 1165.1281(–3) P(7) 1158.1287(–2) 1162.2345(–1) 1165.3492(3) P(6) 1158.1681(–1) 1162.4770(–2) 1165.5657(2) P(5) 1158.2135(–3) 1162.7108(–7) 1165.7774(–5) P(4) 1158.2685(2) 1162.9371(–2) 1165.9857(–1) P(3) 1158.3354(–2) 1163.1541(–5) 1166.1901(11) P(2) 1158.4209(–4) 1163.3632(–1) 1166.3873(1) P(1) 1158.5331(–1) 1166.5815(10) Q(1) 1163.7504(2) Q(2) 1163.7416(1) Q(3) 1163.7289(3) Q(4) 1158.6820(–3) 1163.7117(4) Q(5) 1158.6835(–3) 1163.6902(3) Q(6) 1158.6853(–2) 1163.6645(3) 1166.7712(0) Q(7) 1158.6874(–1) 1163.6348(4) 1166.7728(–1) Q(8) 1158.6899(0) 1163.6005(0) 1166.7752(0) Q(9) 1158.6927(1) 1163.5627(1) 1166.7782(0) Q(10) 1158.6957(1) 1163.5207(–1) 1166.7821(1) Q(11) 1158.6991(1) 1163.4753(1) 1166.7868(0) Q(12) 1158.7028(0) 1163.4260(0) 1166.7927(0) Q(13) 1158.7070(1) 1163.3730(–3) Q(14) 1163.3171(–1) R(1) 1157.5857(8) 1167.1275(0) R(2) 1157.6960(2) 1159.3539(–3) 1164.2752(0) 1167.2987(–4) R(3) 1157.7804(3) 1159.6412(0) 1164.4305(–5) 1167.4657(2) R(4) 1157.8455(0) 1159.9463(1) 1164.5782(2) 1167.6264(0) R(5) 1157.8977(2) 1164.7160(0) 1167.7819(–4) R(6) 1157.9401(0) 1164.8454(5) 1167.9332(0) R(7) 1157.9762(2) 1164.9655(5) 1168.0803(10) R(8) 1165.0767(6) 1168.2210(2) R(9) 1165.1766(–17) 1168.3581(1) R(10) 1158.0580(0) 1163.2720(2) 1168.4914(3) R(11) 1158.0795(–5) 1168.6204(1) R(12) 1158.0994(–6) 1168.7455(–4) R(13) 1168.8687(5) R(14) 1158.1360(–1) R(15) 1158.1528(2) a括号中的数字为 (实验值-计算值) ×104. Parameter Ground state D2O (v2= 1) excited $\Sigma \left( {{0_{00}}} \right)$ Ref. [7] This work This work v/cm–1 1177.92144 (32) $B$/MHz 2795.93 2795.86781(44) 2797.88(11) $D$/kHz 78.137 77.7551(54) 77.16(46) $H$/Hz –2.406 –2.930 (19) –2.930(19)b $\Sigma \left( {{1_{11}}} \right)$ Ref. [7] This work Ref. [11] v/cm–1) 20.669081(11) 20.6690759(17) 1199.84075(22) $B$/MHz) 2808.409(30) 2808.36099(61) 2835.137(51) $D$/kHz) 136.24(89) 136.328(14) 137.005(33) $H$/Hz) –23.3(69) –20.27(10) — $L$/Hz) –0.084(18) –0.09110(29) — $\Pi \left( {{1_{11}}} \right)$ Ref. [7] This work Ref. [11] v/cm–1) 19.335135(11) 19.2419471 (16) 1198.12738(22) $B$/ MHz 2793.526(22) 2793.46903(54) 2767.084(51) ${D^{\text{e}}}$/kHz 13.84(74) 13.308(12) 20.806(33) ${D^{\text{f}}}$/ kHz 79.06(33) 78.7624(73) — $ {H^{\text{e}}} $/Hz –1.49(58) –17.565(94) — $ {H^{\text{f}}} $/Hz –1.7(13) –1.902(27) — ${L^{\text{e}}}$/Hz 0.140(14) 0.14473(24) — $\beta $/MHz 5141.09(12) 3635.3021(12) 3509.22(19) $\Sigma \left( {{1_{01}}} \right)$ Ref. [2] This work This work v/cm–1 1177.74889(26) $B$/MHz 2729.114(10) 2729.11326(75) 2734.85(98) $D$/kHz 52.96(24) 52.965(19) 53.90(42) $H$/Hz –13.5(17) –13.40(13) –13.40(13) $\Pi \left( {{1_{01}}} \right)$ Ref. [2] This work Ref. [12] v/cm–1 10.9809467(18) 10.9809468(17) 1189.41215(11) ${B^{\text{e}}}$/MHz 2815.2130(92) 2815.21185(76) — ${B^{\text{f}}}$/MHz 2733.497(12) 2742.423 (66) ${D^{\text{e}}}$/kHz 110.24(18) 110.229(16) — ${D^{\text{f}}}$/kHz 78.66(31) 78.665(28) 75.65(25) $ {H^{\text{e}}} $/Hz 23.2(11) 23.228(96) — $ {H^{\text{f}}} $/Hz 5.0(23) 5.07(21) — $\Pi \left( {{1_{10}}} \right)$ Ref. [2] This work Ref. [11] v/cm–1 13.9945245(20) 13.9945245(19) 1192.86911(21) ${B^{\text{e}}}$/MHz 2866.584(19) 2866.5846(12) 2855.13(60) ${B^{\text{f}}}$/MHz 2799.615(18) 2799.6154(11) 2793.37(19) ${D^{\text{e}}}$/kHz 61.65(90) 61.646(40) 47.97(79) ${D^{\text{f}}}$/kHz 63.21(68) 63.211(30) 35.08(20) $ {H^{\text{e}}} $/Hz –32(13) –31.95(37) — $ {H^{\text{f}}} $/Hz –22.2(74) –22.22(22) — a括号中的数字为拟合标准偏差;
b固定在基态值上.v2=0 D2Ov2=1 excited Exp. Theo.c Exp.-Theo. Exp. Theo.c Exp.-Theo. $\Pi \left( {{1_{11}}} \right)$a 19.2419 19.4189 –0.177 20.2996 20.4349 –0.1353 $\Sigma \left( {{1_{11}}} \right)$a 20.6691 20.9706 –0.3015 21.3633 22.0928 –0.6647 $\Pi \left( {{1_{01}}} \right)$b 10.9809 10.9785 0.0024 11.6633 11.6329 0.0304 $ \Pi \left( {{1_{10}}} \right) $b 13.9945 14.4571 –0.4624 15.1202 15.4173 –0.2971 a$\Pi \left( {{1_{11}}} \right)$和$\Sigma \left( {{1_{11}}} \right)$相对于$\Sigma \left( {{0_{00}}} \right)$的能级间隔; b$\Pi \left( {{1_{01}}} \right)$和$\Pi \left( {{1_{10}}} \right)$相对于$\Sigma \left( {{1_{01}}} \right)$的能级间隔; c理论计算值来自于文献[33] . -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33]
Catalog
Metrics
- Abstract views:2591
- PDF Downloads:42
- Cited By:0