Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

Wei Wen-Jing, Gao Xu-Dong, Lü Liang-Liang, Xu Nan-Nan, Li Gong-Ping
PDF
HTML
Get Citation
  • In recent years, the development of new semiconductor materials has made an opportunity and challenge for technological innovation and the development of emerging industries. Among them, cadmium zinc telluride materials have highlighted important application prospects due to their excellent properties. The CdZnTe, as the third-generation cutting-edge strategic semiconductor material, has the advantages of high detection efficiency, low dark current, strong portability, and applicability at room temperature without additional cooling system. However, when the cadmium zinc telluride detector is exposed to radiation environment for a long time, it will cause different degrees of radiation damage, which will affect the performance of the device or even fail to work, and greatly shorten the service time of the detector in the radiation field. The transport process of 1.00–14.00 MeV neutrons in CdZnTe material is simulated to obtain the information about the primary knock-on atoms, and then by combining with the cascade collision model, the irradiation of neutrons with different energy in CdZnTe material is analyzed. The damage is simulated and calculated. The calculation results are shown below. The energy of most of the primary knock-on atoms is located at the low-energy end, and with the increase of the incident neutron energy, the types of primary knock-on atoms are more abundant, and the energy also increases gradually. With neutron irradiation of CdZnTe, the non-ionizing energy loss is uniformly distributed along the depth direction in the material, and the non-ionizing energy loss first increases and then decreases with the increase of the incident neutron energy. The calculation results of displacements per atom(dpa) show that the dpa also increases first with the increase of the incident neutron energy. And further analysis shows that the number of Te displacement atom atoms and the number of the Zn displacement atoms both increase first and decrease then with the increase of incident neutron energy, while the number of Cd displacement atoms increases with the increase of incident neutron energy, which is co-modulated by its inelastic scattering cross-section and other nuclear-like reaction cross-sections. The comprehensive analysis shows that with the increase of the incident neutron energy, inelastic scattering becomes the main factor causing the internal displacement damage of the material.
        Corresponding author:Li Gong-Ping,ligp@lzu.edu.cn
      • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 11975006, 11575074), and the Open Project of Key Laboratory of Special Functional Materials and Structural Design of the Ministry of Education (Class B) of Lanzhou University in 2021 (Grant No. lzujbky-2021-kb06).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

    • Energy/
      MeV
      Element Recoil atoms Ek Edam(T) Percentage/%
      2.45 Cd 114Cd(12.57%)112Cd(10.47%)111Cd(5.57%)113Cd(5.44%)
      110Cd(5.33%)116Cd(3.31%)106—109, 115, 117Cd(0.98%)
      0.002 eV—
      91.79 keV
      0.002 eV—
      76.80 keV
      43.67
      Te 130Te(18.43%)128Te(16.58%)126Te(9.94%)125Te(3.71%)124Te(2.51%)
      122Te(1.32%)120, 121, 123, 127, 129, 131Te(0.58%)
      0.03 eV—
      81.05 keV
      0.03 eV—
      69.68 keV
      53.05
      Zn 64Zn(1.59%)66Zn(0.93%)68Zn(0.55%)65, 67, 69—70Zn(0.15%) 1.33 eV—
      150.18 keV
      1.29 eV—
      102.91 keV
      3.23
      Other 1H4He61, 64Ni64Cu etc. 527.59 eV—
      5.62 MeV
      492.12 eV—
      239.7 keV
      0.05
      14.00 Cd 112Cd(11.47%)114Cd(10.38%)113Cd(9.46%)111Cd(8.68%)110Cd(7.08%)
      116Cd(2.66%)109Cd(2.02%)115Cd(1.47%)105—108, 117Cd(1.12%)
      0.07 eV—
      548.26 keV
      0.07 eV—
      314.20 keV
      54.34
      Te 130Te(13.88%)128Te(13.17%)126Te(7.87%)125Te(2.85%)124Te(2.02%)
      122Te(1.10%)120—121, 123, 127, 129, 131Te(0.41%)
      0.05 eV—
      458.06 keV
      0.05 eV—
      279.67 keV
      41.29
      Zn 64Zn(1.30%)66Zn(0.87%)68Zn(0.54%)65, 67, 69—70Zn(0.13%) 0.87 eV—
      861.92 keV
      0.85 eV—
      325.25 keV
      2.83
      H 1H(0.71%)2H(0.02%) 2.17 keV—
      14.60 MeV
      313.33 eV—
      1.69 keV
      0.73
      Other 4He(0.26%)61, 63—65, 67Ni63—68, 70Cu120—128, 130Sb102—111, 113Pd
      105—114, 116Ag117, 119—123, 125, 127Sn etc.
      328.98 eV—
      19.94 MeV
      315.24 eV—
      0.66 MeV
      0.81
      DownLoad: CSV

      Energy/
      MeV
      Element Recoil atoms Ek Edam(T) Percen-
      tage
      1.00 Cd 114Cd (13.61%),112Cd (11.30%),111Cd (6.00%)
      113Cd(5.83%),110Cd (5.80%),116Cd (3.56%)
      106—109, 115, 117Cd (1.06%)
      0.03 eV—37.49 keV 0.03 eV—32.95 keV 47.16%
      Te 130Te (16.79%),128Te(15.86%),126Te (9.30%)125Te (3.51%),
      124Te (2.40%),122Te (1.27%)120, 121, 123, 127, 129, 131Te (0.57%)
      0.02 eV—33.17 keV 0.02 eV—29.67 keV 49.69%
      Zn 64Zn (1.55%),66Zn (0.87%),68Zn (0.57%)
      65, 67, 69—71Zn (0.15%)
      0.10 eV—61.31 keV 0.10 eV—47.55 keV 3.14%
      Other 4He,61Ni, etc. 0.12—3.84 MeV 5.88—171.64 keV 0.01%
      2.45 Cd 114Cd(12.57%),112Cd(10.47%),111Cd(5.57%)113Cd(5.44%),
      110Cd(5.33%),116Cd(3.31%)106—109, 115, 117Cd(0.98%)
      0.002 eV—91.79 keV 0.002 eV—76.80 keV 43.67%
      Te 130Te(18.43%),128Te(16.58%),126Te(9.94%)125Te(3.71%),
      124Te(2.51%),122Te(1.32%)120, 121, 123, 127, 129, 131Te(0.58%)
      0.03 eV—81.05 keV 0.03 eV—69.68 keV 53.05%
      Zn 64Zn(1.59%),66Zn(0.93%),68Zn(0.55%)65, 67, 69—70Zn(0.15%) 1.33 eV—150.18 keV 1.29 eV—102.91 keV 3.23%
      Other 1H,4He,61, 64Ni,64Cu, etc. 527.59 eV—5.62 MeV 492.12 eV—239.77 keV 0.05%
      5.00 Cd 114Cd(12.56%),112Cd(10.53%),111Cd(5.60%)110Cd(5.39%),
      113Cd(5.32%),116Cd(3.33%)106—109, 115, 117Cd(0.93%)
      0.04 eV—187.28 keV 0.04 eV—147.18 keV 43.66%
      Te 130Te(17.82%),128Te(16.26%),126Te(9.67%)125Te(3.61%),
      124Te(2.45%),122Te(1.30%)120, 121, 123, 127, 129, 131Te(0.54%)
      0.02 eV—163.22 keV 0.02 eV—133.96 keV 51.65%
      Zn 64Zn(2.07%),66Zn(1.26%),68Zn(0.86%)65, 67, 69—71Zn(0.21%) 0.20 eV—306.43 keV 0.20 eV—150.03 keV 4.39%
      Other 64, 66—67Cu,103, 108Pd,1H,4He61, 63—65Ni,106, 108Ag, etc. 163.93 eV—10.68 MeV 154.95 eV—368.6 keV 0.30%
      10.00 Cd 114Cd(13.72%),112Cd(13.72%),110Cd(7.19%)111Cd(5.30%),
      113Cd(4.80%),116Cd(3.44%)106—109, 115, 117Cd(1.32%)
      0.04 eV—387.48 keV 0.04 eV—234.63 keV 49.08%
      Te 130Te(15.10%),128Te(15.02%),126Te(9.37%)125Te(2.65%),
      124Te(2.50%),122Te(1.37%)120, 123, 127, 129, 131Te(0.42%)
      0.02 eV—327.02 keV 0.02 eV—207.62 keV 46.42%
      Zn 64Zn(1.77%),66Zn(1.15%),68Zn(0.81%)67, 69—70Zn(0.17%) 0.21 eV—614.56 keV 0.21 eV—256.14 keV 3.90%
      Other 1—2H(0.21%),63—64, 66—68Cu(0.17%),4He (0.10%)61, 63—65Ni,
      102—103, 105, 107—108, 110Pd117, 119—123, 127Sn,106, 108, 110—114Ag
      120, 122—126, 128, 130Sb, etc.
      1940.87 eV—15.72 MeV 554.83 eV—547.11 keV 0.60%
      14.00 Cd 112Cd(11.47%),114Cd(10.38%),113Cd(9.46%)111Cd(8.68%),
      110Cd(7.08%),116Cd(2.66%)109Cd(2.02%),115Cd(1.47%) ,
      105—108, 117Cd(1.12%)
      0.07 eV—548.26 keV 0.07 eV—314.20 keV 54.34%
      Te 130Te(13.88%),128Te(13.17%),126Te(7.87%)125Te(2.85%),
      124Te(2.02%),122Te(1.10%)120—121, 123, 127, 129, 131Te(0.41%)
      0.05 eV—458.06 keV 0.05 eV—279.67 keV 41.29%
      Zn 64Zn(1.30%),66Zn(0.87%),68Zn(0.54%)65, 67, 69—70Zn(0.13%) 0.87 eV—861.92 keV 0.85 eV—325.25 keV 2.83%
      H 1H(0.71%),2H(0.02%) 2.17 keV—14.60 MeV 313.33 eV—1.69 keV 0.73%
      Other 4He (0.26%),61, 63—65, 67Ni,63—68, 70Cu120—128, 130Sb,
      102—111, 113Pd,105—114, 116Ag117, 119—123, 125, 127Sn, etc.
      328.98 eV—19.94 MeV 315.24 eV—0.66 MeV 0.81%
      DownLoad: CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

    • [1] Zhao Po, Wang Jian-Qiang, Chen Mei-Qing, Yang Jin-Xue, Su Zheng-Xiong, Lu Chen-Yang, Liu Hua-Jun, Hong Zhi-Yong, Gao Rui.Effect of doping on evolution of He+ion irradiation defects and superconductivity in EuBa2Cu3O7–δsuperconducting strips. Acta Physica Sinica, 2024, 73(8): 087401.doi:10.7498/aps.73.20240124
      [2] Cao Song, Yin Wen, Zhou Bin, Hu Zhi-Liang, Shen Fei, Yi Tian-Cheng, Wang Song-Lin, Liang Tian-Jiao.Calculation of radiation damage of key components of China Spallation Neutron Source II target station. Acta Physica Sinica, 2024, 73(9): 092501.doi:10.7498/aps.73.20240088
      [3] Peng Chao, Lei Zhi-Feng, Zhang Zhan-Gang, He Yu-Juan, Ma Teng, Cai Zong-Qi, Chen Yi-Qiang.Study on characteristics of neutron-induced leakage current increase for SiC power devices. Acta Physica Sinica, 2023, 72(18): 186102.doi:10.7498/aps.72.20230976
      [4] Zhang Guo-Shuai, Yin Chao, Wang Zhao-Fan, Chen Ze, Mao Shi-Feng, Ye Min-You.Simulation of neutron irradiation-induced recrystallization of tungsten. Acta Physica Sinica, 2023, 72(16): 162801.doi:10.7498/aps.72.20230531
      [5] Li Wei, Bai Yu-Rong, Guo Hao-Xuan, He Chao-Hui, Li Yong-Hong.Geant4 simulation of neutron displacement damage effect in InP. Acta Physica Sinica, 2022, 71(8): 082401.doi:10.7498/aps.71.20211722
      [6] Hao Rui-Jing, Guo Hong-Xia, Pan Xiao-Yu, Lü Ling, Lei Zhi-Feng, Li Bo, Zhong Xiang-Li, Ouyang Xiao-Ping, Dong Shi-Jian.Neutron-induced displacement damage effect and mechanism of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2020, 69(20): 207301.doi:10.7498/aps.69.20200714
      [7] Wang Tie-Shan, Zhang Duo-Fei, Chen Liang, Lü Peng, Du Xin, Yuan Wei, Yang Di.Irradiation-induced modifications in the mechanical properties of borosilicate glass. Acta Physica Sinica, 2017, 66(2): 026101.doi:10.7498/aps.66.026101
      [8] Gao Yun-Liang, Zhu Yuan-Jiang, Li Jin-Ping.First-principle study of initial irradiation damage in aluminum. Acta Physica Sinica, 2017, 66(5): 057104.doi:10.7498/aps.66.057104
      [9] Chang Xiao-Yang, Yao Shun, Zhang Qi-Ling, Zhang Yang, Wu Bo, Zhan Rong, Yang Cui-Bai, Wang Zhi-Yong.Anti-radiation of space triple-junction solar cell based on distributed Bragg reflector structure. Acta Physica Sinica, 2016, 65(10): 108801.doi:10.7498/aps.65.108801
      [10] Qi Jia-Hong, Hu Jian-Min, Sheng Yan-Hui, Wu Yi-Yong, Xu Jian-Wen, Wang Yue-Yuan, YANG Xiao-Ming, Zhang Zi-Rui, Zhou Yang.Carrier transport mechanism of GaAs/Ge solar cells under electrons irradiation. Acta Physica Sinica, 2015, 64(10): 108802.doi:10.7498/aps.64.108802
      [11] Zeng Jun-Zhe, Li Yu-Dong, Wen Lin, He Cheng-Fa, Guo Qi, Wang Bo, Maria, Wei Yin, Wang Hai-Jiao, Wu Da-You, Wang Fan, Zhou Hang.Effects of proton and neutron irradiation on dark signal of CCD. Acta Physica Sinica, 2015, 64(19): 194208.doi:10.7498/aps.64.194208
      [12] Gu Wen-Ping, Zhang Lin, Li Qing-Hua, Qiu Yan-Zhang, Hao Yue, Quan Si, Liu Pan-Zhi.Effect of neutron irradiation on the electrical properties of AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2014, 63(4): 047202.doi:10.7498/aps.63.047202
      [13] Jiang Shao-Ning, Wan Fa-Rong, Long Yi, Liu Chuan-Xin, Zhan Qian, Ohnuki Somei.Effects of helium and deuterium on irradiation damage in pure iron. Acta Physica Sinica, 2013, 62(16): 166801.doi:10.7498/aps.62.166801
      [14] Cui Zhen-Guo, Gou Cheng-Jun, Hou Qing, Mao Li, Zhou Xiao-Song.Computer simulation of radiation damage caused by low energy neutron in zirconium. Acta Physica Sinica, 2013, 62(15): 156105.doi:10.7498/aps.62.156105
      [15] Zhu Yong, Li Bao-Hua, Xie Guo-Feng.Investigation of proton irradiation damage in BaTiO3 thin film by computer simulation. Acta Physica Sinica, 2012, 61(4): 046103.doi:10.7498/aps.61.046103
      [16] Wang Jun, Zhang Bao-Ling, Zhou Yu-Lu, Hou Qing.Molecular dynamics simulation of helium behavior in tungsten matrix. Acta Physica Sinica, 2011, 60(10): 106601.doi:10.7498/aps.60.106601
      [17] Lan Mu-Jie, Wu Yi-Yong, Hu Jian-Min, He Shi-Yu, Yue Long, Xiao Jing-Dong, Yang De-Zhuang, Zhang Zhong-Wei, Wang Xun-Chun, Qian Yong, Chen Ming-Bo.Radiation damage of space GaAs/Ge solar cells evaluated by displacement damage dose. Acta Physica Sinica, 2011, 60(9): 098110.doi:10.7498/aps.60.098110
      [18] He Xin-Fu, Yang Wen, Fan Sheng.Multi-scale modeling of radiation damage in FeCr alloy. Acta Physica Sinica, 2009, 58(12): 8657-8669.doi:10.7498/aps.58.8657
      [19] Fan Xian-Hong, Li Min, Ni Qi-Liang, Liu Shi-Jie, Wang Xiao-Guang, Chen Bo.Change of reflectivity of Mo/Si multilayer irradiated by proton. Acta Physica Sinica, 2008, 57(10): 6494-6499.doi:10.7498/aps.57.6494
      [20] Li Yang-Xian, Liu He-Yan, Niu Peng-Juan, Liu Cai-Chi, Xu Yue-Sheng, Yang De-Ren, Que Duan-Lin.. Acta Physica Sinica, 2002, 51(10): 2407-2410.doi:10.7498/aps.51.2407
    Metrics
    • Abstract views:4746
    • PDF Downloads:158
    • Cited By:0
    Publishing process
    • Received Date:17 June 2022
    • Accepted Date:22 July 2022
    • Available Online:24 November 2022
    • Published Online:20 November 2022

      返回文章
      返回
        Baidu
        map