\begin{document}$ {\text{1s2s3s}}{\;^{\text{4}}}{\text{S}} $\end{document}, \begin{document}$ {\text{1s2s4s}}{\;^{\text{4}}}{\text{S}} $\end{document} and \begin{document}$ {\text{1s2s2p}}{\;^{\text{4}}}{\text{P}} $\end{document}states of lithium atom and lithium-like ions (Z = 4–10) are solved by using Rayleigh-Ritz variational method in Hylleraas coordinates. The variational energiesenergy converges to an accuracy of 10–13. Then the Fermi contact terms for these states are calculated based on the high precision variation wave functions. In particular, the Drachman global method are adopted in order to improve the convergence of the Fermi contact term. The effect of finite nuclear mass on Fermi contact term, i.e. the first-order mass polarization coefficient is also calculated. The Fermi contact term converges to an accuracy of 10–10, which is the most accurate result at present. Our results can be used as a reference for other theoretical methods or relevant experimental studies."> - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

Wei Xiang-Jie, Sun Deng, Wang Li-Ming, Yan Zong-Chao
PDF
HTML
Get Citation
  • The Fermi contact term is closely related to the atomic hyperfine constants. It often dominates the hyperfine splittings. The quality of the wave function near the origin and the correlation effect between electrons are two main factors which affect the numerical accuracy of the Fermi contact term. It is not an easy task to compute the Fermi contact term with high precision for a general atom. In the present paper, the Schrödinger equations of the $ {\text{1s2s3s}}{\;^{\text{4}}}{\text{S}} $ , $ {\text{1s2s4s}}{\;^{\text{4}}}{\text{S}} $ and $ {\text{1s2s2p}}{\;^{\text{4}}}{\text{P}} $ states of lithium atom and lithium-like ions ( Z= 4–10) are solved by using Rayleigh-Ritz variational method in Hylleraas coordinates. The variational energiesenergy converges to an accuracy of 10 –13. Then the Fermi contact terms for these states are calculated based on the high precision variation wave functions. In particular, the Drachman global method are adopted in order to improve the convergence of the Fermi contact term. The effect of finite nuclear mass on Fermi contact term, i.e. the first-order mass polarization coefficient is also calculated. The Fermi contact term converges to an accuracy of 10 –10, which is the most accurate result at present. Our results can be used as a reference for other theoretical methods or relevant experimental studies.
        Corresponding author:Wang Li-Ming,wlm@whu.edu.cn
      • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 11774080).
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

    • $\varOmega$ Number of terms $E(\varOmega)$/a.u. $R(\varOmega)$
      4 210 –5.212 747 426 455 68
      5 462 –5.212 748 209 017 03
      6 924 –5.212 748 244 064 12 22.33
      7 1716 –5.212 748 246 979 61 12.02
      8 3003 –5.212 748 247 204 70 12.95
      9 5000 –5.212 748 247 216 73 18.71
      10 8000 –5.212 748 247 223 54 1.77
      11 12370 –5.212 748 247 224 70 5.87
      12 18560 –5.212 748 247 224 71 89.09
      13 27130 –5.212 748 247 224 84 0.10
      $\infty $ –5.212 748 247 224 8(2)
      Yan[19] $\infty $ –5.212 748 247 225(5)
      King[13] 1904 –5.212 748 246 6
      DownLoad: CSV

      Ion ${\text{1s2s3s} }{\;^{\text{4} } }{\text{S} }$ ${\text{1s2s4s} }{\;^{\text{4} } }{\text{S} }$ ${\text{1s2s2p} }{\;^{\text{4} } }{\text{P} }$
      ${\text{Li}}$ –5.212 748 247 224 8(2)
      –5.212 748 247 225(5)a
      –5.158 393 473 137 2(4)
      –5.158 393 473 2(2)a
      –5.368 010 154 030 5(2)
      –5.368 010 153 9(2)a
      ${\text{B} }{ {\text{e} }^{\text{+} } }$ –9.619 844 613 890 47(2)
      –9.619 844 58(3)b
      –9.462 507 112 198 5(2)
      –9.462 507 0(2)b
      –10.066 652 477 404 7(4)
      –10.066 652(4)c
      ${{\text{B}}^{2 + }}$ –15.389 482 739 000 99(1)
      –15.389 482 7(0)b
      –15.136 079 140 469(2)
      –15.136 078(8)b
      –16.267 610 175 163 7(4)
      –16.267 610(1)c
      ${{\text{C}}^{3 + }}$ –22.520 800 619 349 34(1)
      –22.520 800 5(8)b
      –22.194 572 767 231(2)
      –22.194 572(4)b
      –23.969 555 014 323 5(3)
      –23.969 555(0)c
      ${{\text{N}}^{4 + }}$ –31.013 515 458 020 68(2)
      –31.013 515 4(3)b
      –30.615 962 427 558(2)
      –30.615 962(2)b
      –33.172 011 265 984 3(3)
      –33.172 011(2)c
      ${{\text{O}}^{5 + }}$ –40.867 505 629 631 74(1)
      –40.867 505 5(9)b
      –40.399 023 507 082(4)
      –40.399 023(2)b
      –43.874 766 296 947 8(4)
      –43.874 766(2)c
      ${{\text{F}}^{6 + }}$ –52.082 709 993 193 28(2)
      –52.082 709 9(6)b
      –51.543 484 487 834(1)
      –51.543 484(2)b
      –56.077 710 886 696 3(4)
      –56.077 710(8)c
      ${\text{N}}{{\text{e}}^{7 + }}$ –64.659 094 417 708 25(1)
      –64.659 094 3(8)b
      –64.049 233 634 687(2)
      –64.049 233(3)b
      –69.780 783 217 935 2(2)
      –69.780 783(2)c
      注: a, 文献[19]; b, 文献[18]; c, 文献[20].
      DownLoad: CSV

      Ion ${\varepsilon _1}$ ${\varepsilon _2}$ ${\varepsilon _3}$
      ${\text{1s2s3s} }{\;^{\text{4} } }{\text{S} }$
      ${\text{Li}}$ –0.019 098 689 45(3) –0.346 258 57(4) 0.174 909 1(5)
      ${\text{B} }{ {\text{e} }^{\text{+} } }$ –0.028 190 435 40(2) –0.865 722 62(2) 0.897 689 5(2)
      ${{\text{B}}^{2 + }}$ –0.033 290 376 39(3) –1.642 090 43(4) 2.614 098 9(2)
      ${{\text{C}}^{3 + }}$ –0.034 289 481 61(2) –2.698 194 80(6) 5.879 648 9(1)
      ${{\text{N}}^{4 + }}$ –0.031 162 328 61(2) –4.056 337 23(2) 11.361 993 82(3)
      ${{\text{O}}^{5 + }}$ –0.023 902 016 05(6) –5.738 638 37(2) 19.842 156(2)
      ${{\text{F}}^{6 + }}$ –0.012 506 894 13(5) –7.767 142 43(4) 32.215 000(3)
      ${\text{N}}{{\text{e}}^{7 + }}$ 0.003 023 055 68(3) –10.163 856 84(2) 49.489 432 4(2)
      ${\text{1s2s4s} }{\;^{\text{4} } }{\text{S} }$
      ${\text{Li}}$ –0.018 619 468 74(3) –0.272 708 10(3) 0.061 978 4(3)
      ${\text{B} }{ {\text{e} }^{\text{+} } }$ 0.035 099 392 18(3) –2.306 028 72(2) 35.296 396(2)
      ${{\text{B}}^{2 + }}$ 1.242 706 153 8(3) –5.493 869 41(3) –41.733 915(2)
      ${{\text{C}}^{3 + }}$ 2.125 081 744 6(3) –5.285 653 44(3) –13.261 767 4(3)
      ${{\text{N}}^{4 + }}$ 3.138 461 490 6(2) –6.795 076 43(3) –15.010 263 8(2)
      ${{\text{O}}^{5 + }}$ 4.330 570 648 1(3) –8.699 185 86(2) –22.191 657 9(2)
      ${{\text{F}}^{6 + }}$ 5.707 148 244 9(2) –10.854 895 13(2) –33.822 354 0(1)
      ${\text{N}}{{\text{e}}^{7 + }}$ 7.269 691 423 1(3) –13.212 273 43(5) –50.532 032(2)
      ${\text{1s2s2p} }{\;^{\text{4} } }{\text{P} }$
      ${\text{Li}}$ 0.197 556 864 869(4) –0.743 722 190(3) 0.462 807 90(2)
      ${\text{B} }{ {\text{e} }^{\text{+} } }$ 0.532 973 840 148(7) –1.776 435 078(2) 1.072 866 24(5)
      ${{\text{B}}^{2 + }}$ 1.026 077 002 714(1) –3.219 212 106(3) 1.903 522 30(1)
      ${{\text{C}}^{3 + }}$ 1.675 951 877 937(6) –5.070 384 099(3) 2.956 052 91(3)
      ${{\text{N}}^{4 + }}$ 2.482 252 239 327(2) –7.329 612 081(3) 4.231 693 02(2)
      ${{\text{O}}^{5 + }}$ 3.444 825 571 973(3) –9.996 821 053(2) 5.731 157 12(2)
      ${{\text{F}}^{6 + }}$ 4.563 595 540 943(6) –13.071 999 313(5) 7.454 857 77(5)
      ${\text{N}}{{\text{e}}^{7 + }}$ 5.838 520 069 099(5) –16.555 151 141(2) 9.403 043 87(2)
      DownLoad: CSV

      $\varOmega$ Number of terms ${f_{\text{c}}}$/a.u. $R\left( \varOmega \right)$
      4 210 114.945 400 79
      5 462 114.945 834 87
      6 924 114.945 803 15 –13.68
      7 1716 114.945 820 05 –1.88
      8 3003 114.945 821 97 8.78
      9 5000 114.945 821 19 –2.45
      10 8000 114.945 820 99 4.04
      11 12370 114.945 821 02 –7.78
      12 18560 114.945 821 02 8.02
      13 27130 114.945 821 01 –0.26
      $\infty $ 114.945 821 01(3)
      Yan[12] $\infty $ 114.945 823(2)
      King[13] 1904 114.945 79
      DownLoad: CSV

      Ion ${f_{\text{c}}}$/a.u.
      ${\text{1s2s3s} }{\;^{\text{4} } }{\text{S} }$ ${\text{1s2s4s} }{\;^{\text{4} } }{\text{S} }$ ${\text{1s2s2p} }{\;^{\text{4} } }{\text{P} }$
      ${\text{Li}}$ 114.945 821 01(3)
      114.945 823(2)a
      114.756 210 17(5)
      114.756 21(2)a
      112.298 053(6)
      112.269 8b
      ${\text{B} }{ {\text{e} }^{\text{+} } }$ 277.186 422 61(3) 273.548 196 54(2) 270.128 559(2)
      ${{\text{B}}^{2 + }}$ 547.507 013 93(5) 498.901 685 71(3) 533.170 916(3)
      ${{\text{C}}^{3 + }}$ 953.552 047 46(4) 859.720 632 46(5) 928.427 902(4)
      ${{\text{N}}^{4 + }}$ 1522.968 426 9(2) 1366.477 417 5(2) 1482.900 739(3)
      1482.85c
      ${{\text{O}}^{5 + }}$ 2283.403 624 4(2) 2042.089 145 6(3) 2223.589 964(6)
      2223.711d
      ${{\text{F}}^{6 + }}$ 3262.505 305 2(2) 2910.646 989 8(5) 3177.495 846(5)
      3177.40c
      ${\text{N}}{{\text{e}}^{7 + }}$ 4487.921 213 6(2) 3996.354 065 8(2) 4371.618 515(2)
      4371.347d
      注: a, 文献[12]; b, 文献[21]; c, 文献[15]; d, 文献[14].
      DownLoad: CSV

      Ion 一阶质量极化系数$ f_{\text{c}}^1 $/a.u.
      ${\text{1s2s3s} }{\;^{\text{4} } }{\text{S} }$ ${\text{1s2s4s} }{\;^{\text{4} } }{\text{S} }$ ${\text{1s2s2p} }{\;^{\text{4} } }{\text{P} }$
      ${\text{Li}}$ 1.895 4(2) 0.790 2(5) 4.832 8(3)
      ${\text{B} }{ {\text{e} }^{\text{+} } }$ 9.284 0(3) 103.777(2) 13.732(1)
      ${{\text{B}}^{2 + }}$ 27.430 7(2) 154.971(2) 28.485(4)
      ${{\text{C}}^{3 + }}$ 63.325 0(3) 41.512(2) 50.36(3)
      ${{\text{N}}^{4 + }}$ 125.663(3) –0.590 2(3) 80.68(2)
      ${{\text{O}}^{5 + }}$ 224.854(2) –60.458(4) 120.73(3)
      ${{\text{F}}^{6 + }}$ 373.014(2) –156.223(3) 171.84(2)
      ${\text{N}}{{\text{e}}^{7 + }}$ 583.972(2) –302.256(5) 235.29(2)
      DownLoad: CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

    • [1] Wang Jian, Wu Chong-Qing.Analysis and optimization of few-mode fibers with low differential mode group delay by variational method. Acta Physica Sinica, 2022, 71(9): 094206.doi:10.7498/aps.71.20212198
      [2] Li Zhi-Qiang, Wang Yue-Ming.One-dimensional spin-orbit coupling Bose gases with harmonic trapping. Acta Physica Sinica, 2019, 68(17): 173201.doi:10.7498/aps.68.20190143
      [3] Dong Cheng-Wei.Periodic orbits of diffusionless Lorenz system. Acta Physica Sinica, 2018, 67(24): 240501.doi:10.7498/aps.67.20181581
      [4] Li Qun, Chen Qian, Chong Jing.Variational study of the 2DEG wave function in InAlN/GaN heterostructures. Acta Physica Sinica, 2018, 67(2): 027303.doi:10.7498/aps.67.20171827
      [5] Chen Yuan-Yuan, Yang Pan-Jie, Zhang Wei-Zhi, Yan Xiao-Na.A powerful method to analyze of photonic crystals: mixed variational method. Acta Physica Sinica, 2016, 65(12): 124206.doi:10.7498/aps.65.124206
      [6] Zhang Meng-Ruo, Chen Kai-Xin.A simple and exact method to analyze optical waveguide with graded index profile. Acta Physica Sinica, 2015, 64(14): 144205.doi:10.7498/aps.64.144205
      [7] Ding Guang-Tao.Damped brachistochrone problem and the relation between constraint and theorem of motion. Acta Physica Sinica, 2014, 63(7): 070201.doi:10.7498/aps.63.070201
      [8] Xiong Zhuang, Wang Zhen-Xin, Naoum C. Bacalis.Accuracy study for excited atoms (ions):A new variational method. Acta Physica Sinica, 2014, 63(5): 053104.doi:10.7498/aps.63.053104
      [9] Zhao Wen-Da, Zhao Jian, Xu Zhi-Jun.Variational multi-source image fusion based on the structure tensor. Acta Physica Sinica, 2013, 62(21): 214204.doi:10.7498/aps.62.214204
      [10] Yang Xiao-Yong, Xue Hai-Bin, Liang Jiu-Qing.Spin coherent-state transformation and analytical solutions of ground-state based on variational-method for spin-Bose models. Acta Physica Sinica, 2013, 62(11): 114205.doi:10.7498/aps.62.114205
      [11] Dai Ji-Hui, Guo Qi.Rotating azimuthon in strongly nonlocal nonlinear media. Acta Physica Sinica, 2009, 58(3): 1752-1757.doi:10.7498/aps.58.1752
      [12] Bai Dong-Feng, Guo Qi, Hu Wei.Variational investigation of Hermite-Gaussian beam propagation in nonlocal Kerr media. Acta Physica Sinica, 2008, 57(9): 5684-5689.doi:10.7498/aps.57.5684
      [13] Huang Shi-Zhong, Ma Kun, Wu Chang-Yi, Ni Xiu-Bo.Energy and relativistic correction of the 1sns configuration in helium. Acta Physica Sinica, 2008, 57(9): 5469-5475.doi:10.7498/aps.57.5469
      [14] Dai Ji-Hui, Guo Qi.Optical beams in nonlocal nonlinear media: A variational solution of the Laguerre-Gauss form. Acta Physica Sinica, 2008, 57(8): 5001-5006.doi:10.7498/aps.57.5001
      [15] Tong Zhi, Wei Huai, Jian Shui-Sheng.Optimal design of distributed Raman amplifiers employed in long-haul optical transmission systems. Acta Physica Sinica, 2006, 55(4): 1873-1882.doi:10.7498/aps.55.1873
      [16] Luo Lai-Long.Tunnel current in carbon fiber reinforced concrete. Acta Physica Sinica, 2005, 54(6): 2540-2544.doi:10.7498/aps.54.2540
      [17] Liu Yu-Xiao, Zhao Zhen-Hua, Wang Yong-Qiang, Chen Yu-Hong.Variational calculations and relativistic corrections to the nonrelativistic ground energies of the helium atom and the helium-like ions. Acta Physica Sinica, 2005, 54(6): 2620-2624.doi:10.7498/aps.54.2620
      [18] Chang Jia-Feng, Zeng Xiang-Hua, Zhou Peng-Xia, Bi Qiao.Calculation of the ground-state energies of hydrogen-like impurity in a lens-shaped quantum dot. Acta Physica Sinica, 2004, 53(4): 978-983.doi:10.7498/aps.53.978
      [19] Kang Yan-Mei, Xu Jian-Xue, Xie Yong.Relaxation rate and stochastic resonance of a single-mode nonlinear optical syst em. Acta Physica Sinica, 2003, 52(11): 2712-2717.doi:10.7498/aps.52.2712
      [20] HAN LI-HONG, GOU BING-CONG, WANG FEI.RADIATIVE TRANSITION OF TRIPLY EXCITED 2p2np4So STATES TO THE ls2pmp4P STATES IN LITHIUM-LIKE IONS. Acta Physica Sinica, 2000, 49(11): 2139-2145.doi:10.7498/aps.49.2139
    Metrics
    • Abstract views:4069
    • PDF Downloads:67
    • Cited By:0
    Publishing process
    • Received Date:10 May 2022
    • Accepted Date:22 June 2022
    • Available Online:11 October 2022
    • Published Online:20 October 2022

      返回文章
      返回
        Baidu
        map