Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Sui Guo-Min, Yan Gui-Jun, Yang Guang, Zhang Bao, Feng Ya-Qing
    PDF
    HTML
    Get Citation
    • Two-dimensional lead halide perovskite solar cell has shown great potential applications because of its relatively high stability in comparison with normal three-dimensional perovskite. More and more two-dimensional lead halide perovskites are used as absorbers in solar cells, but theoretical study on the structure-performance relationship of two-dimensional lead halide perovskites is still lacking. Therefore, starting form 3 kinds of fluorobenzylamine perovskites, first-principle calculations are carried out. By comparing their crystal structures, non-covalent interactions, formation energy, band structures, exciton binding energy, carrier mobilities of theses perovskites, and short-circuit current densities of their corresponding solar cells, the influences caused by organic spacers on the structural and electronic properties are studied. This research shows that the more negative the formation energy, the higher the stability of the optoelectronic device is, and the smaller the exciton binding energy, the larger the short-circuit current of the optoelectronic device is. A relationship for quantitative prediction of short-circuit current is proposed, and substitution with electron-withdrawing groups at the end of the spacer is expected to improve both the stability and short-circuit current density of optoelectronic device. The research results of this work can contribute to the design of new perovskite solar cells with high conversion efficiency.
          Corresponding author:Zhang Bao,baozhang@tju.edu.cn; Feng Ya-Qing,yqfeng@tju.edu.cn
        • Funds:Project supported by the National Key Research and Development Program of China (Grant No. 2020YFB0408002).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

      • 体系 a b 平均Pb—I键键长/Å 形成能/(kJ·mol–1)
        PMA2PbI4 8.42[8.63] 9.05[9.13] 3.19[3.20] –332
        oFPMA2PbI4 8.38[8.70] 8.94[9.16] 3.17[3.21] –315
        pFPMA2PbI4 8.35[8.70] 8.67[9.24] 3.17[3.21] –338
        注: 方括号中为实验数据. 由图1可以看出, 三种钙钛矿具有相同的晶体结构, 其间隔基呈人字形排列, 氟化位置的改变并不影响间隔基的排列方式. 这一现象与氟苯乙胺钙钛矿有所不同, 在氟苯乙胺钙钛矿的实验中, 氟化位置的不同使间隔基呈现多种排列方式[19]. 造成这种区别的原因在于, 氟苯乙铵的苯环侧链长, 苯环可以旋转, 使间隔基具有多种排列方式. 而氟苯甲铵的侧链短, 苯环的旋转受到了甲铵基的限制, 由于甲铵基朝向[PbI6]4-无机八面体赤道面的I原子, 因此氟苯甲铵的位置和取向不能够轻易发生变动, 使得氟化位置无法改变间隔基的排列方式. 此外, 由于苯环侧链长度的差异, 氟苯乙铵中的苯环趴伏在无机八面体上, 而氟苯甲铵中的苯环几乎直立在无机八面体的空隙中, 缺乏苯环与I原子的相互作用, 使得氟苯甲胺钙钛矿的稳定性逊色于氟苯乙胺钙钛矿, 但间隔基排列方式的固定避免了氟苯甲胺钙钛矿产生间隔基取向紊乱的现象[19], 从而确保其光电性能.
        DownLoad: CSV

        体系 激子结合能/meV 载流子折合质量/m0 介电常数 短路电流密度/(mA·cm–2)
        PMA2PbI4 254 0.110 2.42 15.64
        oFPMA2PbI4 260 0.114 2.43 12.79
        pFPMA2PbI4 228 0.114 2.60 17.84
        DownLoad: CSV

        体系 电子/空穴迁移率
        /(cm2·V–1·s–1)
        平均电子迁移率/(cm2·V–1·s–1)
        [1 0 0] [0 1 0]
        PMA2PbI4 1798/112 138/117 256
        oFPMA2PbI4 2152/107 121/123 229
        pFPMA2PbI4 6054/147 60/107 119
        注: 使用调和平均数计算平均电子迁移率.
        DownLoad: CSV

        参数 回归系数 标准差 t检验p F检验p
        a 67 7.1 0.003 0.0096
        b –0.23 0.033 0.006
        c 0.19 0.051 0.032
        DownLoad: CSV

        体系 a b c α/(°) β/(°) γ/(°) V3 空间群
        PMA2PbI4 8.4216 9.0458 35.4988 90.0000 90.2879 90.0000 2704.3 P1
        oFPMA2PbI4 8.3798 8.9357 35.7913 90.0001 91.1255 90.0000 2679.5 P1
        pFPMA2PbI4 8.3543 8.6668 32.1230 90.0165 94.2669 89.9990 2319.4 P1
        DownLoad: CSV

        原子 x y z 原子 x y z
        C1 0.51717 0.55489 0.58411 H14 0.9406 0.1811 0.42597
        C2 0.55366 0.518 0.62436 H15 0.90045 0.05108 0.46057
        C3 0.6666 0.40972 0.63252 H16 0.80301 0.04595 0.4208
        C4 0.70092 0.37303 0.66976 H17 0.28947 0.21097 0.3243
        C5 0.50874 0.5523 0.69118 H18 0.94737 0.89128 0.28593
        C6 0.62202 0.44457 0.6991 H19 0.1494 0.08341 0.27174
        C7 0.47453 0.58909 0.65387 H20 0.88719 0.82566 0.35248
        C8 0.01717 0.94511 0.41589 H21 0.38406 0.45023 0.4338
        C9 0.05366 0.982 0.37564 H22 0.53383 0.32753 0.41889
        C10 0.1666 0.09028 0.36748 H23 0.2711 0.64492 0.39045
        C11 0.20092 0.12697 0.33024 H24 0.5594 0.6811 0.42597
        C12 0.00874 0.9477 0.30882 H25 0.59955 0.55108 0.46057
        C13 0.12202 0.05543 0.3009 H26 0.69699 0.54595 0.4208
        C14 0.97453 0.91091 0.34613 H27 0.21053 0.71097 0.3243
        C15 0.48283 0.44511 0.41589 H28 0.55263 0.39128 0.28593
        C16 0.44634 0.482 0.37564 H29 0.3506 0.58341 0.27174
        C17 0.3334 0.59028 0.36748 H30 0.61281 0.32566 0.35248
        C18 0.29908 0.62697 0.33024 H31 0.88406 0.04977 0.5662
        C19 0.49126 0.4477 0.30882 H32 0.03383 0.17247 0.58111
        C20 0.37798 0.55543 0.3009 H33 0.7711 0.85508 0.60955
        C21 0.52547 0.41091 0.34613 H34 0.0594 0.8189 0.57403
        C22 0.98283 0.05489 0.58411 H35 0.09955 0.94892 0.53943
        C23 0.94634 0.018 0.62436 H36 0.19699 0.95405 0.5792
        C24 0.8334 0.90972 0.63252 H37 0.71053 0.78903 0.6757
        C25 0.79908 0.87303 0.66976 H38 0.05263 0.10872 0.71407
        C26 0.99126 0.0523 0.69118 H39 0.8506 0.91659 0.72826
        C27 0.87798 0.94457 0.6991 H40 0.11281 0.17434 0.64752
        C28 0.02547 0.08909 0.65387 I1 0.04189 0.52535 0.59029
        H1 0.61594 0.54977 0.5662 I2 0.2009 0.19417 0.49275
        H2 0.46617 0.67247 0.58111 I3 0.54189 0.97465 0.40971
        H3 0.7289 0.35508 0.60955 I4 0.7009 0.30583 0.50725
        H4 0.4406 0.3189 0.57403 I5 0.95811 0.47465 0.40971
        H5 0.40045 0.44892 0.53943 I6 0.7991 0.80583 0.50725
        H6 0.30301 0.45405 0.5792 I7 0.45811 0.02535 0.59029
        H7 0.78947 0.28903 0.6757 I8 0.2991 0.69417 0.49275
        H8 0.44737 0.60872 0.71407 N1 0.40969 0.436 0.5683
        H9 0.6494 0.41659 0.72826 N2 0.90969 0.064 0.4317
        H10 0.38719 0.67434 0.64752 N3 0.59031 0.564 0.4317
        H11 0.11594 0.95023 0.4338 N4 0.09031 0.936 0.5683
        H12 0.96617 0.82753 0.41889 Pb1 0 0.5 0.5
        H13 0.2289 0.14492 0.39045 Pb2 0.5 0 0.5
        DownLoad: CSV

        原子 x y z 原子 x y z
        C1 0.97272 0.42186 0.34429 H14 0.47991 0.16751 0.58306
        C2 0.00262 0.45129 0.30696 H15 0.62368 0.03074 0.56934
        C3 0.11933 0.55545 0.29847 H16 0.40004 0.94859 0.54165
        C4 0.20308 0.62829 0.327 H17 0.29985 0.95755 0.58088
        C5 0.1708 0.59565 0.36416 H18 0.43315 0.81415 0.57534
        C6 0.05535 0.4906 0.37357 H19 0.06506 0.60701 0.71463
        C7 0.02251 0.45422 0.41357 H20 0.85522 0.4204 0.73068
        C8 0.47272 0.07814 0.65571 H21 0.7064 0.28985 0.67958
        C9 0.50263 0.04871 0.69304 H22 0.76321 0.34938 0.61344
        C10 0.61933 0.94455 0.70153 H23 0.0201 0.66751 0.58306
        C11 0.70308 0.87171 0.673 H24 0.87632 0.53075 0.56934
        C12 0.6708 0.90435 0.63584 H25 0.09996 0.44859 0.54165
        C13 0.55535 0.0094 0.62643 H26 0.20015 0.45755 0.58088
        C14 0.52252 0.04578 0.58643 H27 0.06685 0.31415 0.57534
        C15 0.02728 0.57814 0.65571 H28 0.56506 0.89299 0.28537
        C16 0.99738 0.54871 0.69304 H29 0.35522 0.0796 0.26932
        C17 0.88067 0.44455 0.70153 H30 0.2064 0.21015 0.32042
        C18 0.79692 0.37171 0.673 H31 0.26321 0.15062 0.38656
        C19 0.8292 0.40435 0.63584 H32 0.5201 0.83249 0.41694
        C20 0.94465 0.5094 0.62643 H33 0.37632 0.96925 0.43066
        C21 0.97749 0.54578 0.58643 H34 0.59997 0.05141 0.45835
        C22 0.52728 0.92186 0.34429 H35 0.70015 0.04245 0.41912
        C23 0.49738 0.95129 0.30696 H36 0.56685 0.18585 0.42466
        C24 0.38067 0.05545 0.29847 F1 0.85786 0.32118 0.35266
        C25 0.29692 0.12829 0.327 F2 0.35786 0.17882 0.64734
        C26 0.3292 0.09565 0.36416 F3 0.14214 0.67882 0.64734
        C27 0.44465 0.9906 0.37357 F4 0.64214 0.82118 0.35266
        C28 0.47749 0.95422 0.41357 I1 0.53033 0.47436 0.41067
        H1 0.93494 0.39299 0.28537 I2 0.30729 0.18552 0.49512
        H2 0.14478 0.5796 0.26932 I3 0.03033 0.02564 0.58933
        H3 0.2936 0.71015 0.32042 I4 0.80729 0.31448 0.50488
        H4 0.23679 0.65062 0.38656 I5 0.46967 0.52564 0.58933
        H5 0.9799 0.33249 0.41694 I6 0.69271 0.81448 0.50488
        H6 0.12368 0.46925 0.43066 I7 0.96967 0.97436 0.41067
        H7 0.90004 0.55141 0.45835 I8 0.19271 0.68552 0.49512
        H8 0.79985 0.54245 0.41912 N1 0.90727 0.56611 0.42973
        H9 0.93315 0.68585 0.42466 N2 0.40727 0.9339 0.57027
        H10 0.43494 0.10701 0.71463 N3 0.09273 0.43389 0.57027
        H11 0.64478 0.9204 0.73068 N4 0.59273 0.06611 0.42973
        H12 0.7936 0.78985 0.67958 Pb1 0.5 0.5 0.5
        H13 0.73679 0.84938 0.61344 Pb2 0 0 0.5
        DownLoad: CSV

        原子 x y z 原子 x y z
        I1 0.43998 0.49329 0.60085 H24 0.222 0.91848 0.25715
        I2 0.07098 0.33645 0.49607 H25 0.17257 0.90258 0.33308
        I3 0.35163 0.54478 0.3987 H26 0.20598 0.02654 0.40327
        I4 0.71978 0.69941 0.50336 H27 0.35886 0.16774 0.41412
        I5 0.85083 0.99328 0.39911 H28 0.93079 0.60433 0.44934
        I6 0.22003 0.83635 0.50392 H29 0.91473 0.71294 0.40637
        I7 0.93937 0.04487 0.60125 H30 0.06 0.57621 0.41199
        I8 0.57128 0.19934 0.49664 H31 0.6696 0.63041 0.33122
        Pb1 0.39566 0.51785 0.49982 H32 0.72093 0.60266 0.25562
        Pb2 0.89544 0.01789 0.50014 H33 0.08874 0.26613 0.28799
        F1 0.8574 0.59929 0.77335 H34 0.03749 0.2931 0.36323
        F2 0.35379 0.91958 0.77233 H35 0.84862 0.37588 0.41492
        F3 0.43329 0.09867 0.22666 H36 0.70462 0.52402 0.40267
        F4 0.93524 0.4196 0.22759 C1 0.93788 0.57312 0.6482
        N1 0.85283 0.43786 0.58256 C2 0.82255 0.675 0.66192
        N2 0.35046 0.10108 0.58261 C3 0.79449 0.68504 0.70405
        N3 0.43798 0.93789 0.41745 C4 0.88414 0.59105 0.73208
        N4 0.94071 0.60122 0.41737 C5 1.00048 0.4892 0.71972
        H1 0.86487 0.4342 0.55066 C6 0.02674 0.48097 0.67738
        H2 0.73234 0.45931 0.58741 C7 0.96141 0.55953 0.60253
        H3 0.88169 0.32725 0.59393 C8 0.4389 0.96453 0.64786
        H4 0.75407 0.74796 0.63941 C9 0.52799 0.05126 0.67825
        H5 0.70514 0.76388 0.71502 C10 0.50017 0.03661 0.72038
        H6 0.06846 0.41876 0.74288 C11 0.3819 0.93418 0.73127
        H7 0.11791 0.40251 0.66695 C12 0.29166 0.8457 0.70198
        H8 0.08482 0.52648 0.59676 C13 0.32154 0.86187 0.66012
        H9 0.93199 0.6677 0.5859 C14 0.46457 0.98378 0.60245
        H10 0.36072 0.10414 0.55065 C15 0.35286 0.073 0.35181
        H11 0.37635 0.21281 0.59363 C16 0.46834 0.17466 0.33809
        H12 0.2311 0.07612 0.58791 C17 0.49638 0.18451 0.29595
        H13 0.6206 0.13035 0.66896 C18 0.40657 0.09057 0.26793
        H14 0.56837 0.10266 0.7445 C19 0.29009 0.98893 0.2803
        H15 0.20074 0.76623 0.71181 C20 0.26385 0.98087 0.32265
        H16 0.25291 0.7931 0.63663 C21 0.32939 0.05954 0.39749
        H17 0.44251 0.87572 0.58511 C22 0.85149 0.4646 0.35216
        H18 0.58643 0.02384 0.59748 C23 0.76207 0.55131 0.32184
        H19 0.42596 0.93425 0.44934 C24 0.78939 0.53661 0.27967
        H20 0.55846 0.95934 0.41259 C25 0.9075 0.43417 0.26868
        H21 0.40913 0.82727 0.40607 C26 0.99801 0.34566 0.2979
        H22 0.53694 0.24759 0.36059 C27 0.96863 0.36187 0.3398
        H23 0.58585 0.26318 0.28498 C28 0.82637 0.48392 0.3976
        DownLoad: CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

      • [1] Luo Pan, Li Xiang, Sun Xue-Yin, Tan Xiao-Hong, Luo Jun, Zhen Liang.Effect of electron irradiation on perovskite films and devices for novel space solar cells. Acta Physica Sinica, 2024, 73(3): 036102.doi:10.7498/aps.73.20231568
        [2] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu.Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, 2024, 73(7): 078401.doi:10.7498/aps.73.20231846
        [3] Liu Si-Wen, Ren Li-Zhi, Jin Bo-Wen, Song Xin, Wu Cong-Cong.Preparation of two-dimensional perovskite layer by solution method for improving stability of FAPbI3perovskite solar cells. Acta Physica Sinica, 2024, 73(6): 068801.doi:10.7498/aps.73.20231678
        [4] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing.Improvement of performance of CsPbBr3perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, 2023, 72(16): 168101.doi:10.7498/aps.72.20230636
        [5] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin.Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101.doi:10.7498/aps.72.20230230
        [6] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong.High performance perovskite solar cells synthesized by dissolving FAPbI3single crystal. Acta Physica Sinica, 2023, 72(1): 018801.doi:10.7498/aps.72.20221461
        [7] Luo Yuan, Zhu Cong-Tan, Ma Shu-Peng, Zhu Liu, Guo Xue-Yi, Yang Ying.Low-temperature preparation of SnO2electron transport layer for perovskite solar cells. Acta Physica Sinica, 2022, 71(11): 118801.doi:10.7498/aps.71.20211930
        [8] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong.Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, 2022, 71(16): 166801.doi:10.7498/aps.71.20220359
        [9] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang.Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802.doi:10.7498/aps.71.20220725
        [10] Wang Jian-Tao, Xiao Wen-Bo, Xia Qing-Gan, Wu Hua-Ming, Li Fan, Huang Le.Influence of back electrode material, structure and thickness on performance of perovskite solar cells. Acta Physica Sinica, 2021, 70(19): 198404.doi:10.7498/aps.70.20211037
        [11] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying.Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801.doi:10.7498/aps.70.20201896
        [12] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong.Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, 2019, 68(15): 158401.doi:10.7498/aps.68.20190569
        [13] Fan Wei-Li, Yang Zong-Lin, Zhang Zhen-Yun, Qi Jun-Jie.Preparation and performance of high-efficient hole-transport-material-free carbon based perovskite solar cells. Acta Physica Sinica, 2018, 67(22): 228801.doi:10.7498/aps.67.20181457
        [14] Yang Ying-Guo, Yin Guang-Zhi, Feng Shang-Lei, Li Meng, Ji Geng-Wu, Song Fei, Wen Wen, Gao Xing-Yu.An in-situ real time study of the perovskite film micro-structural evolution in a humid environment by using synchrotron based characterization technique. Acta Physica Sinica, 2017, 66(1): 018401.doi:10.7498/aps.66.018401
        [15] Liu Yi, Xu Zheng, Zhao Su-Ling, Qiao Bo, Li Yang, Qin Zi-Lun, Zhu You-Qin.Influence of phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer treated by two additives on perovskite solar cell performance. Acta Physica Sinica, 2017, 66(11): 118801.doi:10.7498/aps.66.118801
        [16] Cao Ru-Nan, Xu Fei, Zhu Jia-Bin, Ge Sheng, Wang Wen-Zhen, Xu Hai-Tao, Xu Run, Wu Yang-Lin, Ma Zhong-Quan, Hong Feng, Jiang Zui-Min.Temperature-dependent time response characteristic of photovoltaic performance in planar heterojunction perovskite solar cell. Acta Physica Sinica, 2016, 65(18): 188801.doi:10.7498/aps.65.188801
        [17] Chai Lei, Zhong Min.Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902.doi:10.7498/aps.65.237902
        [18] Song Zhi-Hao, Wang Shi-Rong, Xiao Yin, Li Xiang-Gao.Progress of research on new hole transporting materials used in perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 033301.doi:10.7498/aps.64.033301
        [19] Shi Jiang-Jian, Wei Hui-Yun, Zhu Li-Feng, Xu Xin, Xu Yu-Zhuan, Lü Song-Tao, Wu Hui-Jue, Luo Yan-Hong, Li Dong-Mei, Meng Qing-Bo.S-shaped current-voltage characteristics in perovskite solar cell. Acta Physica Sinica, 2015, 64(3): 038402.doi:10.7498/aps.64.038402
        [20] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian.progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038802.doi:10.7498/aps.64.038802
      Metrics
      • Abstract views:3220
      • PDF Downloads:71
      • Cited By:0
      Publishing process
      • Received Date:24 April 2022
      • Accepted Date:18 May 2022
      • Available Online:13 October 2022
      • Published Online:20 October 2022

        返回文章
        返回
          Baidu
          map