-
With the development of computer network technology, people’s requirements for information security is increasing day by day. However, the classical encryption technology has the defects of small key space and easy crack. The problems of image encryption technology in protecting image information security and private content need solving urgently. As a new type of quantum key generator, quantum random walk has a large key space. Compared with the classical random walk, the computing speed and security are significantly improved. This paper presents a three-dimensional image encryption algorithm that is based on quantum random walk and involves Lorenz and Rossler multidimensional chaos. Firstly, Gaussian pyramid is used to segment the image. Secondly, the Hamming distances of several sub images are calculated by using the random sequence generated by quantum random walk and the random sequence generated by Lorenz chaotic system in multi-dimensional chaos, and then synthesized, and the Euclidean distances between the three RGB channels of the image are calculated. Finally, the sequence value obtained from the remainder of Hamming distance and Euclidean distance, as an initial value is input into the Rossler system in multi-dimensional chaos to generate a random sequence which is used as the key to XOR the RGB channel of the image so as to create an encrypted image. The corresponding decryption scheme is the inverse process of the encryption process. In addition, in terms of transmission security, this paper uses a blind watermark embedding algorithm based on DCT and SVD to embed the watermark information into the encrypted image, so that the receiver can extract the watermark and judge whether the image is damaged by the attack in the transmission process according to the integrity of the watermark information. If it is not attacked maliciously, the image will be decrypted. This operation further improves the protection of image information security.The experimental results show that the peak signal-to-noise ratio of the encrypted image is stable between 7 and 9 and the encryption effect is good, the GVD score is close to 1, the correlation of the encrypted image is uniformly distributed, and the correlation coefficient is close to 0, and the key space is 2 128in size and the encrypted histogram is evenly distributed, showing a high ability to resist statistical analysis attacks.
-
Keywords:
- quantum walk/
- chaotic model/
- image encryption/
- blind watermarking
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] -
图像 通道 Horizontal Vertical Diagonal 图像1 R 0.9985 0.9990 0.9976 G 0.9980 0.9988 0.9973 B 0.9980 0.9991 0.9975 加密图像1 R –0.0136 –0.0325 –0.0304 G 0.0304 0.0014 0.0251 B –0.0234 0.0221 0.0051 图像 通道 Horizontal Vertical Diagonal 图像2 R 0.9910 0.9858 0.9752 G 0.9954 0.9941 0.9883 B 0.9969 0.9962 0.9930 加密图像2 R –0.0136 –0.0325 –0.0304 G 0.0304 0.0014 0.0251 B –0.0234 0.0221 0.0051 图像 通道 Horizontal Vertical Diagonal 图像3 R 0.9293 0.9631 0.8961 G 0.9077 0.9522 0.8648 B 0.9011 0.9379 0.8484 加密图像3 R –0.0069 –0.0081 –0.0218 G –0.0070 0.0065 –0.0245 B –0.0117 0.0249 –0.0134 图像 通道 Horizontal Vertical Diagonal 图像4 R 0.9568 0.9750 0.9379 G 0.9449 0.9665 0.9170 B 0.9540 0.9746 0.9346 加密图像4 R –0.0162 –0.0055 0.0147 G 0.0006 0.0003 –0.0060 B 0.0207 –0.0291 0.0017 GVD 原始-加密
图像1原始-加密
图像2原始-加密
图像3原始-加密
图像4R 0.9993 0.995 0.9755 0.9809 G 0.9993 0.9947 0.9763 0.9815 B 0.9993 0.995 0.9804 0.9826 图像 通道 NPCR/% UACI/% 图像1 R 99.5687 33.4381 G 99.6098 33.4594 B 99.6180 33.4347 图像2 R 99.5690 33.4386 G 99.6100 33.4598 B 99.6186 33.4350 图像3 R 99.5684 33.4378 G 99.6094 33.4588 B 99.6174 33.4437 图像4 R 99.5688 33.4376 G 99.6088 33.4590 B 99.6170 33.4347 PSNR 原始-加密
图像1原始-加密
图像2原始-加密
图像3原始-加密
图像4R 7.691 8.376 9.369 9.582 G 7.755 8.132 8.686 9.193 B 7.479 7.747 6.782 7.782 PSNR 加密-嵌入
水印1加密-嵌入
水印2加密-嵌入
水印3加密-嵌入
水印4R 38.81 38.81 38.8 38.79 G 40.28 40.29 40.26 40.28 B 35.46 35.48 35.47 35.47 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36]
Catalog
Metrics
- Abstract views:4007
- PDF Downloads:136
- Cited By:0