-
With the complexity of problems in reality increasing, the sizes of deep learning neural networks, including the number of layers, neurons, and connections, are increasing in an explosive way. Optimizing hyperparameters to improve the prediction performance of neural networks has become an important task. In literatures, the methods of finding optimal parameters, such as sensitivity pruning and grid search, are complicated and cost a large amount of computation time. In this paper, a hyperparameter optimization strategy called junk neuron deletion is proposed. A neuron with small mean weight in the weight matrix can be ignored in the prediction, and is defined subsequently as a junk neuron. This strategy is to obtain a simplified network structure by deleting the junk neurons, to effectively shorten the computation time and improve the prediction accuracy and model the generalization capability. The LSTM model is used to train the time series data generated by Logistic, Henon and Rossler dynamical systems, and the relatively optimal parameter combination is obtained by grid search with a certain step length. The partial weight matrix that can influence the model output is extracted under this parameter combination, and the neurons with smaller mean weights are eliminated with different thresholds. It is found that using the weighted mean value of 0.1 as the threshold, the identification and deletion of junk neurons can significantly improve the prediction efficiency. Increasing the threshold accuracy will gradually fall back to the initial level, but with the same prediction effect, more operating costs will be saved. Further reduction will result in prediction ability lower than the initial level due to lack of fitting. Using this strategy, the prediction performance of LSTM model for several typical chaotic dynamical systems is improved significantly.
-
Keywords:
- LSTM/
- chaotic time series prediction/
- hyperparameter optimization/
- junk neuron deletion strategy
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] -
模型 train test win L1 L2 D1 D2 准确率 Logistic
(μ= 3.6)5000 15 22 16 4 4 1 82.90% Logistic
(μ= 3.7)5000 15 22 16 4 4 1 70.70% Logistic
(μ= 3.8)5000 15 2 20 4 4 1 68.60% Logistic
(μ= 3.9)5000 15 2 16 4 2 1 60.00% Logistic
(μ= 3.99)5000 15 2 16 4 4 1 57.10% Henon 5000 15 2 22 2 2 1 67.10% Rossler 5000 15 2 16 4 4 1 77.10% 结构 起始点 终点 input_gate 0 units forget_gate units 2×units cell 2×units 3×units output_gate 3×units 4×units w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 x1 0.032129 0.144328 0.007293 0.003557 0.070465 0.011652 0.11142 0.048287 0.105727 0.039649 0.010162 0.119949 0.0771 0.126937 0.001947 0.089396 x2 0.070867 0.013232 0.054503 0.073496 0.005734 0.064071 0.145835 0.083217 0.025553 0.033065 0.113584 0.028327 0.054085 0.177761 0.010123 0.046546 x3 0.083647 0.046366 0.066226 0.044534 0.010054 0.077919 0.071001 0.018548 0.035294 0.071642 0.053888 0.028448 0.102273 0.096744 0.078535 0.114879 x4 0.039123 0.113002 0.161581 0.113866 0.070651 0.085571 0.01836 0.015408 0.032978 0.018375 0.068342 0.059137 0.00701 0.070451 0.032602 0.099853 x5 0.013762 0.055823 0.147481 0.055493 0.093444 0.027264 0.082384 0.058674 0.032903 0.033342 0.045937 0.035937 0.110378 0.004487 0.161653 0.041037 x6 0.038079 0.089649 0.013102 0.021696 0.042833 0.109787 0.001024 0.0673 0.036916 0.134038 0.066291 0.146953 0.009803 0.081372 0.098701 0.042456 x7 0.013865 0.001702 0.057869 0.072264 0.104456 0.029761 0.062669 0.07539 0.05715 0.102282 0.017876 0.012626 0.020022 0.100243 0.153076 0.11875 x8 0.002042 0.006925 0.060008 0.13031 0.136406 0.056203 0.061606 0.028064 0.006926 0.099129 0.055122 0.117276 0.06846 0.014505 0.078184 0.078834 x9 0.044205 0.171724 0.153162 0.13818 0.029189 0.025947 0.049391 0.012338 0.100584 0.028133 0.004946 0.017914 0.008463 0.014741 0.066944 0.134139 x10 0.094619 0.0563 0.040223 0.096283 0.10152 0.145036 0.051991 0.075623 0.075216 0.061209 0.057986 0.066076 0.004787 0.01945 0.042341 0.011339 x11 0.078909 0.005603 0.08149 0.125202 0.069081 0.10143 0.122451 0.027058 0.057647 0.016226 0.03275 0.050667 0.036795 0.11072 0.081767 0.002204 x12 0.046159 0.005688 0.006237 0.004618 0.014815 0.005272 0.04598 0.037005 0.190933 0.065535 0.005131 0.015155 0.065812 0.099804 0.172294 0.21956 x13 0.111226 0.027026 0.027497 0.074868 0.139154 0.084413 0.080342 0.038769 0.088824 0.047083 0.056548 0.002081 0.10549 0.049929 0.020529 0.04622 x14 0.092772 0.03999 0.055938 0.128114 0.036386 0.013061 0.083943 0.051033 0.106374 0.007257 0.063049 0.091929 0.084821 0.020458 0.089496 0.035379 x15 0.131586 0.038161 0.176303 0.041758 0.049173 0.096633 0.0033 0.045529 0.084262 0.050839 0.003322 0.063406 0.029601 0.045323 0.116047 0.024757 x16 0.070289 0.05378 0.092472 0.03372 0.052087 0.110236 0.055639 0.124221 0.029371 0.06142 0.04904 0.043376 0.012261 0.041226 0.109564 0.061299 均
值0.060205 0.054331 0.075087 0.072372 0.064091 0.065266 0.065459 0.050404 0.066666 0.054326 0.043998 0.056204 0.049428 0.067134 0.082113 0.072915 指标 调整前 以各权重阀值调整后 变化趋势 0.09 0.1 0.11 L1 16 15 12 10 准确率 57.10% 59.30% 56.40% 51.40% 模型 调整前L1 调整后L1 调整前准确率 调整后准确率 神经元数调整 准确率变化趋势 Logistic
(μ= 3.6)16 15 82.90% 90.70% –1 Logistic
(μ= 3.7)16 13 70.70% 71.40% –3 Logistic
(μ= 3.8)20 16 68.60% 68.60% –4 Logistic
(μ= 3.9)16 12 60.00% 60.00% –4 Logistic
(μ= 3.99)16 15 57.10% 59.30% –1 Henon 22 21 67.10% 70.00% –1 Rossler 16 14 77.10% 83.60% –2 指标 调整前 以各权重阀值调整后 变化趋势 0.08 0.09 0.095 L1 16 15 12 10 准确率 82.90% 90.70% 87.90% 78.60% 指标 调整前 以各权重阀值调整后 变化趋势 0.075 0.09 0.105 L1 16 13 11 9 准确率 70.70% 71.40% 65.00% 60.70% 指标 调整前 以各权重阀值调整后 变化趋势 0.085 0.095 0.105 L1 20 18 16 12 准确率 68.60% 68.60% 68.60% 65.00% 指标 调整前 以各权重阀值调整后 变化趋势 0.09 0.095 0.1 L1 16 14 12 10 准确率 60.00% 60.00% 60.00% 55.00% 指标 调整前 以各权重阀值调整后 变化趋势 0.1 0.11 0.12 0.14 L1 22 21 19 16 14 准确率 67.10% 70.00% 66.40% 65.70% 65.00% 指标 调整前 以各权重阀值调整后 变化趋势 0.085 0.095 0.105 0.115 L1 16 14 12 11 8 准确率 77.10% 83.60% 81.40% 80.70% 71.40% -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20]
Catalog
Metrics
- Abstract views:3373
- PDF Downloads:63
- Cited By:0