Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Chen Zhong-Qi, Zhong An, Dai Dong, Ning Wen-Jun
    PDF
    HTML
    Get Citation
    • In the application of atmospheric pressure plasma jet, the influence of ambient gas cannot be ignored, especially in some specific scenarios which are highly sensitive to ambient particles. Coaxial double-tube plasma jet device is a promising method of controlling the chemical properties of jet effluent by restraining the mutual diffusion between jet effluent and ambient gas. In this work, the discharge characteristics and chemical properties of coaxial double-tube helium atmospheric pressure plasma jet at different flow rates of shielding gas are studied numerically, and the model is validated by experimental optical images. The results illustrate the enhanced discharge at the high flow rate, the weaker discharge at the low flow rate, and discharge behaviors without shielding gas as well. With the increase of shielded gas flow rate, the particle density increases in the discharge space, which can be attributed to the wider main discharge channel caused by the increase of shielding gas flow rate. In addition, the analysis shows the great difference in ion fluxes affected by the flow rate of the SG between the contour lines of different helium mole fractions. This study further reveals that different discharge positions have a great influence on the generation of nitrogen and oxygen particles, thus deepening the understanding of influence of shielding gas flow rate on discharge behavior, and may open up new opportunities for the further application of plasma jet.
          Corresponding author:Dai Dong,ddai@scut.edu.cn
        • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 51877086).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

      • 边界 表达式 备注
        AX 对称轴
        BC ui= 3 slm,c= 1 工作气体入口
        DE uo,c= 0 屏蔽气体入口
        FG u= 0.1 m/s,c= 0 环境空气入口
        GW p= 1 atm, ${{\boldsymbol{n}}} \cdot {D_{\text{d} } }\nabla c = 0$
        BPO,CQRD,
        UW,ESTF
        u= 0 m/s, ${{\boldsymbol{n}}} \cdot {D_{\text{d} } }\nabla c = 0$
        DownLoad: CSV

        边界 表达式 备注
        IPO V=V0, 方程(9)—方程(12) 外施电压
        HX 对称轴
        IJ,KL $- {\boldsymbol{n}} \cdot {\boldsymbol{D}} = 0$, $- {\boldsymbol{n} } \cdot {\boldsymbol{\varGamma} } {\text{e} } = 0$, $- {\boldsymbol{n}} \cdot {\boldsymbol{\varGamma}} {\varepsilon } = 0$
        TV V= 0, $- {\boldsymbol{n}} \cdot {\boldsymbol{\varGamma}} {\text{e} } = 0$, $- {\boldsymbol{n}} \cdot {\boldsymbol{\varGamma}} {\varepsilon } = 0$ 接地
        TM,XYV V= 0 接地
        UV,LST,JQRK 方程(9)—方程(12), 方程(14), 方程(15)
        DownLoad: CSV

        序号 反应方程式 速率常数 能量损耗
        /eV
        参考
        文献
        1 ${\rm{e+He\to e+He}}$ f(c, ε) (m3·s–1) / [40]
        2 ${\rm{e+He\to e+He^{\ast}}}$ f(c, ε) (m3·s–1) 19.82 [40]
        3 ${\rm{e+He^{\ast }\to e+He}} $ f(c, ε) (m3·s–1) –19.82 [40]
        4 ${\rm{e+He\to 2e+He^{+}}} $ f(c, ε) (m3·s–1) 24.587 [40]
        5 ${\rm{e+N_{2}\to e+N_{2}}} $ f(c, ε) (m3·s–1) / [40]
        6 ${\rm{e+N_{2}\to e+N_{2}(VIB\, \textit{v}1)}}$ f(c, ε) (m3·s–1) 0.2889 [40]
        7 ${\rm{e+N_{2}\to e+N_{2}(VIB\, 3\textit{v}1)} }$ f(c, ε) (m3·s–1) 0.8559 [40]
        8 ${\rm{e+N_{2}\to e+N_{2}(VIB\, 4\textit{v}1)} }$ f(c, ε) (m3·s–1) 1.1342 [40]
        9 ${\rm{e+N_{2}\to e+N_{2}(VIB \,5\textit{v}1)} }$ f(c, ε) (m3·s–1) 1.4088 [40]
        10 ${\rm{e+N_{2}\to 2e+N_{2}^{+}}} $ f(c, ε) (m3·s–1) 15.6 [40]
        11 ${\rm{e+O_{2}\to e+O_{2}}} $ f(c, ε) (m3·s–1) / [40]
        12 ${\rm{e+O_{2}\to O+O^{-}}} $ f(c, ε) (m3·s–1) / [40]
        13 ${\rm{e+O_{2}\to O_{2}^{-}}} $ f(c, ε) (m3·s–1) / [40]
        14 ${\rm{e+O_{2}\to e+O_{2}(VIB\, 3\textit{v}1)} }$ f(c, ε) (m3·s–1) 0.57 [40]
        15 ${\rm{e+O_{2}\to e+O_{2}(VIB\, 4\textit{v}1)} }$ f(c, ε) (m3·s–1) 0.75 [40]
        16 ${\rm{e+O_{2}\to e+O_{2} } }(\rm A1)$ f(c, ε) (m3·s–1) 0.997 [40]
        17 ${\rm{e+O_{2}\to e+O_{2}}} $ f(c, ε) (m3·s–1) –0.997 [40]
        18 ${\rm{e+O_{2}\to e+O_{2} } }(\rm B1)$ f(c, ε) (m3·s–1) 1.627 [40]
        19 ${\rm{e+O_{2}\to e+O_{2}}} $ f(c, ε) (m3·s–1) –1.627 [40]
        20 ${\rm{e+O_{2}\to e+O_{2}(EXC)}} $ f(c, ε) (m3·s–1) 4.5 [40]
        21 ${\rm{e+O_{2}\to e+O+O}} $ f(c, ε) (m3·s–1) 5.58 [40]
        22 ${\rm{e+O_{2}\to e+O+O(^{1}D)}} $ f(c, ε) (m3·s–1) 8.4 [40]
        23 ${\rm{e+O_{2}\to 2e+O_{2}^{+}}}$ f(c, ε)(m3·s–1) 12.1 [40]
        24 ${\rm{e+He^{\ast }\to 2e+He^{+}}} $ $4.661 \times {10^{ - 16} } \times {T_{\text{e} } ^{0.6}} \times { {\rm{e} }^{ - 4.78/T_{\text{e} } } }\,({\rm m}^3{\cdot} {\rm{s} }^{-1})$ 4.78 [41]
        25 ${\rm{e+He_{2}^{\ast }\to 2e+He_{2}^{+}}} $ $1.268 \times {10^{ - 18} } \times {T_{\text{e} }^{0.71} }\times { {\text{e} }^{ - 3.4/T_{\text{e} } } }\, ({\rm m}^3{\cdot} {\rm{s} }^{-1})$ 3.4 [41]
        26 ${\rm{2He^{\ast }\to e+He+He^{+}}} $ 4.5 × 10–16(m3·s–1) –15 [41]
        27 ${\rm{e+He_{2}^{+}\to He^{\ast}+He}} $ $5.386\times10^{-13}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$ / [41]
        28 ${\rm{e+He^{+}\to He^{\ast}}} $ $6.76\times10^{-19}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$ / [41]
        29 ${\rm{2e+He^{+}\to e+He^{\ast}}} $ $6.186\times10^{-39}\times T_{\rm e}^{-4.4}\rm (m^3{\cdot} s^{-1})$ / [31]
        30 ${\rm{e+He+He^{+}\to He+He^{\ast}}} $ $6.66\times10^{-42}\times T_{\rm e}^{-2}\rm (m^6{\cdot} s^{-1})$ / [31]
        31 ${\rm{2e+He_{2}^{+}\to He_{2}^{\ast}+e}} $ 1.2 × 10–33(m6·s–1) / [31]
        32 ${\rm{e+He+He_{2}^{+}\to He_{2}^{\ast }+He}} $ 1.5 × 10–39(m6·s–1) / [31]
        33 ${\rm{e+He+He_{2}^{+}\to He^{\ast }+2He}} $ 3.5 × 10–39(m6·s–1) / [31]
        34 ${\rm{2e+He_{2}^{+}\to He^{\ast }+He+e}} $ 2.8 × 10–32(m6·s–1) / [31]
        35 ${\rm{e+N_{2}\to e+N+N}} $ $1\times10^{-16}\times T_{\rm e}^{-0.5}\times {\rm e}^{{-16}/T_{\rm{e} }}\rm (m^3{\cdot} s^{-1})$ 9.757 [42]
        36 ${\rm{e+N_{2}^{+}\to N+N}} $ $4.8\times10^{-13}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$ / [42]
        37 ${\rm{e+N_{2}^{+}\to N_{2}}} $ $7.72\times10^{-14}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$ / [43]
        38 ${\rm{e+N_{4}^{+}\to 2N_{2}}} $ $3.22\times10^{-13}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$ / [44]
        39 ${\rm{2e+N_{2}^{+}\to N_{2}+e}} $ $3.165\times10^{-42}\times T_{\rm e}^{-0.8}\rm (m^6 \cdot s^{-1})$ / [44]
        40 ${\rm{e+2O_{2}\to O_{2}+O_{2}^{-}}} $ $5.17\times10^{-43}\times T_{\rm e}^{-1}\rm (m^6{\cdot} s^{-1})$ –0.43 [44]
        41 ${\rm{e+O_{2}^{+}\to O+O}} $ $6\times10^{-11}\times T_{\rm e}^{-1}\rm (m^3{\cdot} s^{-1})$ –6.91 [44]
        42 ${\rm{e+O_{2}^{+}\to O_{2}}} $ 4 × 10–18(m3·s–1) / [43]
        43 ${\rm{e+O_{4}^{+}\to 2O_{2}}} $ $2.25\times10^{-13}\times T_{\rm e}^{-0.5}\rm (m^3{\cdot} s^{-1})$ / [44]
        44 ${\rm{He^{\ast}+ 2He \to He_{2}^{\ast }+He}} $ 1.3 × 10–45(m6·s–1) / [41]
        45 ${\rm{He^{+}+2He\to He_{2}^{+}+He}} $ 1 × 10–43(m6·s–1) / [41]
        46 ${\rm{N_{2}+N_{2}+N_{2}^{+}\to N_{2}+N_{4}^{+}}} $ 5 × 10–41(m6·s–1) / [44]
        47 ${\rm{O^{-}+O_{2}^{+}\to O+O_{2}}} $ 2 × 10–13(m3·s–1) / [41]
        48 ${\rm{O_{2}^{-}+O_{2}^{+}\to O_{2}+O_{2}}} $ 2 × 10–13(m3·s–1) / [41]
        49 ${\rm{O_{2}^{-}+O_{2}^{+}+O_{2}\to 3O_{2}}} $ 2 × 10–37(m6·s–1) / [44]
        50 ${\rm{O_{2}^{-}+O_{4}^{+}+O_{2}\to 4O_{2}}} $ 2 × 10–37(m6·s–1) / [44]
        51 ${\rm{O_{2}+O_{2}+O_{2}^{+}\to O_{2}+O_{4}^{+}}} $ 2.4 × 10–42(m6·s–1) / [44]
        52 ${\rm{He^{\ast }+N_{2}\to e+He+N_{2}^{+}}} $ 7 × 10–17(m3·s–1) / [41]
        53 ${\rm{He_{2}^{\ast }+N_{2}\to e+2He+N_{2}^{+}}} $ 7 × 10–17(m3·s–1) / [41]
        54 ${\rm{He_{2}^{\ast }+O_{2}\to e+2He+O_{2}^{+}}} $ 3.6 × 10–16(m3·s–1) / [43]
        55 ${\rm{He^{\ast }+O_{2}\to e+He+O_{2}^{+}}} $ 2.6 × 10–16(m3·s–1) / [43]
        56 ${\rm{He_{2}^{+}+N_{2}\to N_{2}^{+}+2He}} $ 5 × 10–16(m3·s–1) / [41]
        57 ${\rm{He^{+}+N_{2}\to N_{2}^{+}+He}} $ 5 × 10–16(m3·s–1) / [41]
        58 ${\rm{He+N_{2}+N_{2}^{+}\to He+N_{4}^{+}}} $ 8.9 × 10–42(m6·s–1) / [42]
        59 ${\rm{He+O_{2}+O_{2}^{+}\to He+O_{4}^{+}}} $ 5.8 × 10–43(m6·s–1) / [42]
        60 ${\rm{He+O_{2}^{-}+O_{2}^{+}\to He+2O_{2}}} $ 2 × 10–37(m6·s–1) / [43]
        61 ${\rm{O_{2}^{-}+O_{2}^{+}+N_{2}\to 2O_{2}+N_{2}}} $ 2 × 10–37(m6·s–1) / [43]
        62 ${\rm{O_{2}^{-}+O_{4}^{+}+N_{2}\to 3O_{2}+N_{2}}} $ 2 × 10–37(m6·s–1) / [44]
        63 ${\rm{N_{2}+O_{2}+N_{2}^{+}\to O_{2}+N_{4}^{+}}} $ 5 × 10–41(m6·s–1) / [44]
        64 ${\rm{O_{2}+N_{4}^{+}\to 2N_{2}+O_{2}^{+}}} $ 2.5 × 10–16(m3·s–1) / [44]
        65 ${\rm{O_{2}+N+N\to O_{2}+N_{2}}} $ 3.9 × 10–45(m6·s–1) / [43]
        66 ${\rm{O+O+N\to O_{2}+N}} $ 3.2 × 10–45(m6·s–1) / [42]
        注:f(c,ε)表示速率系数是通过电子能量分布函数(EEDF)使用相关文献中的横截面获得的.c表示He摩尔分数,ε表示平均电子能量(eV),neTe表示电子密度(m–3) 和电子温度(eV). 他代表He(23S)和He(21S). He2*代表He2(a3∑u+). N2(VIBv1), N2(VIB 3v1), N2(VIB 4v1)和N2(VIB 5v1)被视为N2, O2(VIB 3v1), O2(VIB 4v1), O2(A1), O2(B1)和O2(EXC)被视为O2; O(1D)和O(1S)被视为O.
        DownLoad: CSV

        反应 cHe= 98%轮
        廓线上
        化学反应速率
        /(mol·m–2·s–1)
        cHe= 95%轮
        廓线上
        化学反应速率
        /(mol·m–2·s–1)
        cHe= 90%轮
        廓线上
        化学反应速率
        /(mol·m–2·s–1)
        R41: e + $\rm O_2^+$ → O + O 2.98 × 10–3 1.27 × 10–3 3.81 × 10–4
        R46: N2+ N2+ $\rm N_2^+ $ → N2+ $\rm N_4^+$ 1.67 × 10–4 1.61 × 10–5 2.67 × 10–7
        R51: O2+ O2+ $\rm O_2^+$ → O2+ $\rm O_4^+$ 8.86 × 10–7 3.83 × 10–6 6.70 × 10–6
        R52: He*+ N2→ e + He + $\rm N_2^+ $ 1.29 × 10–3 4.48 × 10–5 4.96 × 10–7
        R55: He*+ O2→ e + He + $\rm O_2^+$ 1.28 × 10–3 4.42 × 10–5 4.90 × 10–7
        R58: He + N2+ $\rm N_2^+ $ → He + $\rm N_4^+ $ 1.86 × 10–3 6.92 × 10–5 5.41 × 10–7
        R63: N2+ O2+ $\rm N_2^+ $ → O2+ $\rm N_4^+ $ 4.45 × 10–5 4.29 × 10–6 7.09 × 10–8
        R64: O2+ $\rm N_4^+ $ → 2N2+ $\rm O_2^+$ 1.59 × 10–3 9.67 × 10–4 1.10 × 10–4
        DownLoad: CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

      • [1] Liu Kun, Xiang Hong-Fu, Zhou Xiong-Feng, Xia Hao-Tian, Li Hua.Spectral diagnosis of atmospheric pressure AC argon plasma jet at constant power. Acta Physica Sinica, 2023, 72(11): 115201.doi:10.7498/aps.72.20230307
        [2] Zhu Yan-Rong, Chang Zheng-Shi.Effects of pulse voltage rising edge on discharge evolution of He atmospheric pressure plasma jet in dielectric tube. Acta Physica Sinica, 2022, 71(2): 025202.doi:10.7498/aps.71.20210470
        [3] Yang Li-Jun, Song Cai-Hong, Zhao Na, Zhou Shuai, Wu Jia-Cun, Jia Peng-Ying.Discharge characteristics of argon brush plasma plume operated at atmospheric pressure. Acta Physica Sinica, 2021, 70(15): 155201.doi:10.7498/aps.70.20202091
        [4] Zhong Wang-Shen, Chen Ye-Li, Qian Mu-Yang, Liu San-Qiu, Zhang Jia-Liang, Wang De-Zhen.Zero-dimensional numerical simulation of dry reforming of methane in atmospheric pressure non-equilibrium plasma. Acta Physica Sinica, 2021, 70(7): 075206.doi:10.7498/aps.70.20201700
        [5] Zhang Ya-Rong, Han Qian-Han, Guo Ying, Zhang Jing, Shi Jian-Jun.Discharge characteristics and mechanism of plasma plume generated by atmospheric pulsed discharge. Acta Physica Sinica, 2021, 70(9): 095202.doi:10.7498/aps.70.20202246
        [6] Kong De-Lin, Yang Bing-Yan, He Feng, Han Ruo-Yu, Miao Jin-Song, Song Ting-Lu, Ouyang Ji-Ting.Deposition of titanium oxide films by atmospheric pressure corona discharge plasma jet. Acta Physica Sinica, 2021, 70(9): 095205.doi:10.7498/aps.70.20202181
        [7] Chen Jian, Liu Zhi-Qiang, Guo Heng, Li He-Ping, Jiang Dong-Jun, Zhou Ming-Sheng.Physical characteristics of ion extraction simulation system based on gas discharge plasma jet. Acta Physica Sinica, 2018, 67(18): 182801.doi:10.7498/aps.67.20180919
        [8] Guo Heng, Zhang Xiao-Ning, Nie Qiu-Yue, Li He-Ping, Zeng Shi, Li Zhi-Hui.Numerical modelling for characteristics of the meso-pressure six-phase alternative current arc discharge plasma jet. Acta Physica Sinica, 2018, 67(5): 055201.doi:10.7498/aps.67.20172557
        [9] Guo Heng, Su Yun-Bo, Li He-Ping, Zeng Shi, Nie Qiu-Yue, Li Zhan-Xian, Li Zhi-Hui.Characteristics of meso-pressure six-phase alternative current arc discharge plasma jet: Experiments. Acta Physica Sinica, 2018, 67(4): 045201.doi:10.7498/aps.67.20172556
        [10] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie.Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202.doi:10.7498/aps.67.20172192
        [11] Liu Fu-Cheng, Yan Wen, Wang De-Zhen.Two-dimensional simulation of atmospheric pressure cold plasma jets in a needle-plane electrode configuration. Acta Physica Sinica, 2013, 62(17): 175204.doi:10.7498/aps.62.175204
        [12] Huang Jun, Chen Wei, Li Hui, Wang Peng-Ye, Yang Si-Ze.Inactivation of Hela cancer cells by an atmospheric pressure cold plasma jet. Acta Physica Sinica, 2013, 62(6): 065201.doi:10.7498/aps.62.065201
        [13] Dong Li-Fang, Liu Wei-Yuan, Yang Yu-Jie, Wang Shuai, Ji Ya-Fei.Spectral diagnostics of electron density of plasma torch at atmospheric pressure. Acta Physica Sinica, 2011, 60(4): 045202.doi:10.7498/aps.60.045202
        [14] Li Xue-Chen, Yuan Ning, Jia Peng-Ying, Chang Yuan-Yuan, Ji Ya-Fei.Characteristics of atmospheric pressure air uniform discharge generated by a plasma needle. Acta Physica Sinica, 2011, 60(12): 125204.doi:10.7498/aps.60.125204
        [15] Yu Liang, Li Xiao-Dong, Wang Yu, Ni Ming-Jiang, Yan Jian-Hua, Tu Xin.Characterization of atmospheric pressuredc gliding arc plasma. Acta Physica Sinica, 2011, 60(1): 015101.doi:10.7498/aps.60.015101
        [16] Liu Li-Ying, Zhang Jia-Liang, Guo Qing-Chao, Wang De-Zhen.Diagnostics of the atmospheric pressure plasma jets for plasma enhanced chemical vapor deposition of polycrystalline silicon thin film. Acta Physica Sinica, 2010, 59(4): 2653-2660.doi:10.7498/aps.59.2653
        [17] Jiang Nan, Cao Ze-Xian.Experimental studies on an atmospheric pressure He plasma jet. Acta Physica Sinica, 2010, 59(5): 3324-3330.doi:10.7498/aps.59.3324
        [18] .The distribution of dust particles in the plasma sheath. Acta Physica Sinica, 2007, 56(12): 7090-7099.doi:10.7498/aps.56.7090
        [19] Sun Jiao, Zhang Jia-Liang, Wang De-Zhen, Ma Teng-Cai.A novel cold plasma jet generated by capillary atmospheric dielectric barrier discharge. Acta Physica Sinica, 2006, 55(1): 344-350.doi:10.7498/aps.55.344
        [20] Yan Jian-Hua, Tu Xin, Ma Zeng-Yi, Pan Xin-Chao, Cen Ke-Fa, Cheron Bruno.Characterization of DC argon plasma jet at atmospheric pressure. Acta Physica Sinica, 2006, 55(7): 3451-3457.doi:10.7498/aps.55.3451
      Metrics
      • Abstract views:3624
      • PDF Downloads:86
      • Cited By:0
      Publishing process
      • Received Date:08 March 2022
      • Accepted Date:14 April 2022
      • Available Online:11 August 2022
      • Published Online:20 August 2022

        返回文章
        返回
          Baidu
          map