\begin{document}${X^1}\Sigma _{\rm{g}}^ + ,{a^\prime }^1\Sigma _{\rm{u}}^ - ,{a^1}{\Pi _{\rm{g}}}$\end{document} and \begin{document}$b{}^1{\Pi _{\rm u}}$\end{document} electronic states of N2. The spectroscopic constants and vibrational level spaceings are calculated and in excellent agreement with the available theoretical results and experimental data. Based on the calculated molecular structure parameters, the opacities of N2 in a temperature range of 295–20000 K under a pressure of 100 atm (1 atm = 1.01×105 Pa) are presented. The results demonstrate that the wavelength range of absorption cross sections are enlarged with the temperature increasing. Moreover, the cross sections are mainly dominated in the range of ultraviolet for the cases with temperature T < 5000 K, while the obvious population can be found in the infrared ranges for the cases with temperature T > 10000 K due to the contribution of the excited states. The influence of temperature on the opacities of nitrogen molecule are investigated in the present work, which can provide theoretical and data support for researches of astrophysics and nuclear weapons."> Opacities of <inline-formula><tex-math id="Z-20220715033133-1">\begin{document}${ X}^1\Sigma^+_{\rm g}, a'{}^1\Sigma^-_{\rm u}, a{}^1\Pi_{\rm g} \text{ and } { b}^1\Pi_{\rm u}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20220043_Z-20220715033133-1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="14-20220043_Z-20220715033133-1.png"/></alternatives></inline-formula> electronic states for nitrogen molecule - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Opacities of ${ X}^1\Sigma^+_{\rm g}, a'{}^1\Sigma^-_{\rm u}, a{}^1\Pi_{\rm g} \text{ and } { b}^1\Pi_{\rm u}$ electronic states for nitrogen molecule

    Chen Chen, Zhao Guo-Peng, Qi Yue-Ying, Wu Yong, Wang Jian-Guo
    PDF
    HTML
    Get Citation
    Metrics
    • Abstract views:3607
    • PDF Downloads:63
    • Cited By:0
    Publishing process
    • Received Date:07 January 2022
    • Accepted Date:17 March 2022
    • Available Online:09 July 2022
    • Published Online:20 July 2022

      返回文章
      返回
        Baidu
        map