\begin{document}$ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $\end{document}, \begin{document}$ {{\text{a}}^{\text{3}}}{\Pi_{{{\text{0}}^ + }}} $\end{document}, a3Π1, a3Π2, and A1Π1 states are calculated by using the internally contracted multireference configuration interaction (icMRCI) method. In order to obtain the accurate potential energy curve, the errors caused by single and double electron excitation, core-valence correlation effects, relativistic effects and basis set truncation are corrected. The spectral and transition data of BH molecule are in good agreement with the available theoretical and experimental data. The calculation results show that the A1Π1(υ′ = 0-2, J′ = 1, +) →\begin{document}$ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $\end{document}(υ′′ = 0-2, J′′ = 1, –) transition has large Einstein A-coefficient, weighted absorption oscillator strength, and highly diagonal vibrational branching ratio Rυ′υ′′, and the excited state A1Π1(υ′ = 0, 1) have short spontaneous radiation lifetimes. Moreover, the effects of \begin{document}$ {{\text{a}}^{\text{3}}}{\Pi_{{{\text{0}}^ + }}} $\end{document}and a3Π1 states on A1Π1(υ′ = 0) ↔ \begin{document}$ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $\end{document}(υ′′ = 0) cycle transition can be ignored. Therefore, according to the A1Π1(υ′ = 0-1, J′ = 1, +) ↔ \begin{document}$ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $\end{document}(υ′′ = 0-3, J′′ = 1, –) cycle transition, we propose to apply one main cooling laser (λ00 = 432.45 nm) and two repumping lasers (λ10 = 479.67 nm and λ21 = 481.40 nm) to laser cooling BH molecules, and evaluation of the cooling effect."> - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Xing Wei, Li Sheng–Zhou, Sun Jin–Feng, Li Wen–Tao, Zhu Zun–Lüe, Liu Feng
    PDF
    HTML
    Get Citation
    • In this work, the potential energy curves of eight low electronic states (X 1Σ +, a 3Π, A 1Π, b 3Σ -, 2 3Π, 1 3Σ +, 1 5Σ -, and 1 5Π) and twenty-three Ω states of BH molecule, and the transition dipole moments among the $ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $ , $ {{\text{a}}^{\text{3}}}{\Pi_{{{\text{0}}^ + }}} $ , a 3Π 1, a 3Π 2, and A 1Π 1states are calculated by using the internally contracted multireference configuration interaction (icMRCI) method. In order to obtain the accurate potential energy curve, the errors caused by single and double electron excitation, core-valence correlation effects, relativistic effects and basis set truncation are corrected. The spectral and transition data of BH molecule are in good agreement with the available theoretical and experimental data. The calculation results show that the A 1Π 1( υ′= 0-2, J′= 1, +) → $ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $ ( υ′′= 0-2, J′′= 1, –) transition has large Einstein A-coefficient, weighted absorption oscillator strength, and highly diagonal vibrational branching ratio R υ′υ′′, and the excited state A 1Π 1( υ′= 0, 1) have short spontaneous radiation lifetimes. Moreover, the effects of $ {{\text{a}}^{\text{3}}}{\Pi_{{{\text{0}}^ + }}} $ and a 3Π 1states on A 1Π 1( υ′= 0) ↔ $ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $ ( υ′′= 0) cycle transition can be ignored. Therefore, according to the A 1Π 1( υ′ = 0-1, J′= 1, +) ↔ $ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $ ( υ′′ = 0-3, J′′ = 1, –) cycle transition, we propose to apply one main cooling laser ( λ 00= 432.45 nm) and two repumping lasers ( λ 10= 479.67 nm and λ 21= 481.40 nm) to laser cooling BH molecules, and evaluation of the cooling effect.
          Corresponding author:Xing Wei,wei19820403@163.com
        • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 61275132, 11274097), the Natural Science Foundation of Henan Province, China (Grant No. 212300410233), the Key Scientific Research Prgoram of Higher Education of Henan Province, China (Grant No. 21A140023), and the Nanhu Scholars Program for Young Scholars of XYNU, China.
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

      • 离解极限 Λ-S态 能级a/cm–1
        本文 实验[30] 理论[31]
        B(2Pu) + H(2Sg) X1Σ+, a3Π, A1Π, 13Σ+ 0.00 0.00 0.00
        B(4Pg) + H(2Sg) b3Σ, 15Σ, 23Π, 15Π 28907.66 28644.99+xb 28932.70
        a,4Pg态能级为4P1/2,4P3/24P5/2能级的算术平均值减去2P3/22P1/2能级的算术平均值; b,4P5/2能级外推值的不确定度.
        DownLoad: CSV

        Λ-S态 来源 Te/cm–1 Re/nm ωe/cm–1 ωexe/cm–1 Be/cm–1 αe/(102cm–1) De/eV
        X1Σ+ 本文 0 0.12295 2367.28 48.7782 12.0395 37.0985 3.7137
        实验[8] 0 0.12322 2366.73 49.3384 12.0255 42.1516
        实验[10] 0 2366.73 49.3398 12.0258 42.1565
        实验[12] 0 2364.66 47.7098 12.0257 42.1591 3.6476±0.0037a
        实验[13] 0 0.12322 2366.73 49.3405 12.0255 42.1450
        理论[5] 0 0.12290 2352.0 44.0 12.086 3.6863
        理论[15] 0 0.12301 2379 46.79 12.07 3.70
        理论[16] 0 0.12312 2378 12.055 3.578b
        理论[17] 0 0.1230 2359 48.8 41.8 3.6773
        理论[18] 0 0.12327 2368.48 50.6957 12.110 43.05 3.6580
        理论[19] 0 0.12300 3.6751
        理论[20] 0 0.12293 2365.69 47.2310 12.0801 41.6 3.6851
        a3Π 本文 10944.32 0.11899 2625.97 59.4177 12.8919 41.6404 2.3507
        实验[14] xc 0.11900 2625.14 55.7840 12.8931 41.5610 2.3867
        理论[5] 10645.0 0.11900 2961.0 109.6 12.904 2.3806
        理论[15] 0.11913 2653 62.70 12.87 2.38
        理论[17] 10583 0.11900 2625 60.4 45.5 2.3677
        理论[18] 9557.67 0.11925 2598.98 46.6300 12.9400 42.53 2.3135
        A1Π 本文 23203.52 0.12223 2253.28 36.8310 11.8343 11.6254 0.8368
        实验[10] 23135.44 0.12195d 2251.46 56.5725 12.20035 53.7670 0.697d
        实验[12] 23105.10 2342.41 127.7618 12.19986 53.6736 0.7786±0.0037a
        理论[5] 22997.90 0.12210 2404.60 147.3 12.2795 0.9098
        理论[15] 0.12213 2320 136.5 12.24 0.71
        理论[16] 23061 0.12235 2290 12.20 0.73b
        理论[17] 23144 0.1222 2341 129.6 85.1 0.8109
        理论[18] 22260.89 0.12267 2280.26 93.6233 12.229 60.83 0.7536
        理论[19] 23099.84 0.12212 2343.96 128.178 12.2836 74.0 0.8938
        b3Σ 本文 38238.63 0.12164 2440.89 54.4477 12.2508 33.6712 2.5959
        实验[14] xc+27152.75 0.121625 2438.10 55.562 12.3426 43.087 2.5987
        理论[15] 0.12256 2345 48.45 12.16 2.54
        理论[17] 37708 0.1217 2430 57.3 45.9 2.5845
        理论[18] 36859.52 0.12199 2428.33 55.409 12.284 44.31 2.5403
        23Π 本文 50730.46 0.19215 1273.89 20.7896 4.94471 3.0957 1.0467
        理论[15] 0.19338 1425 57.04 4.88 1.04
        理论[17] 50216 0.1931 1295 38.6 9.9 1.0321
        13Σ+ 本文 51738.07 0.12592 0.0031
        理论[17] 51688 0.123
        15Σ 本文 58295.54 0.16981 634.868 167.676 6.51936 192.641 0.1093
        理论[17] 57674 0.1701 528 87.3 153.2 0.1084
        a, 文献[11]中的值; b,D0值; c,x表示a3Π态相对于X1Σ+态的Te值; d, 文献[7]中的值.
        DownLoad: CSV

        原子态(B + H) Ω态 能级/cm–1
        本文 实验[30]
        B(2P1/2) + H(2S1/2) 0, 0+, 1 0.00 0.00
        B(2P3/2) + H(2S1/2) 2, 1(2), 0+, 0 14.572 15.287
        B(4P1/2) + H(2S1/2) 0, 0+, 1 28910.63 28647.43+xa
        B(4P3/2) + H(2S1/2) 2, 1(2), 0+, 0 28914.67 28652.07+xa
        B(4P5/2) + H(2S1/2) 3, 2(2), 1(2), 0+, 0 28921.41 28658.40+xa
        a,4P5/2能级外推值的不确定度.
        DownLoad: CSV

        Ω态 Te/cm–1 Re/nm ωe/cm–1 ωexe/cm–1 Be/cm–1 102αe/cm–1 De/eV Re附近主要的Λ–S态/%
        $ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $ 0 0.12295 2367.28 48.7783 12.0395 37.0985 3.7138 X1Σ+(100.00)
        ${\text{a} }{}^{\text{3} }{\Pi_{ { {\text{0} }^{{ - } } } }}$ 10940.36 0.11899 2625.93 59.4165 12.8918 41.6426 2.3506 a3Π (100.00)
        $ {\text{a}}{}^{\text{3}}{\Pi_{{{\text{0}}^ + }}} $ 10940.37 0.11899 2625.93 59.4192 12.8918 41.6424 2.3506 a3Π (100.00)
        a3Π1 10944.32 0.11899 2625.97 59.4140 12.8919 41.6403 2.3513 a3Π (100.00)
        a3Π2 10948.49 0.11899 2626.01 59.4131 12.8919 41.6384 2.3509 a3Π (100.00)
        A1Π1 23203.52 0.12223 2253.28 36.8317 11.8338 11.7034 0.9051 A1Π (100.00)
        (3)0+第一势阱 38244.33 0.12163 2438.08 44.7281 12.2925 38.3041 1.5501 b3Σ(100.00)
        (3)0+第二势阱 50725.86 0.19213 0.0026 23Π (100.00)
        (3)1 38244.35 0.12163 2447.69 54.2934 12.3167 37.6149 0.8995 b3Σ(100.00)
        (4)1 45758.49 0.16496 4850.09 1293.00 6.73952 4.02168 1.6629 13Σ+(100.00)
        ${\text{2} }{}^{\text{3} }{\Pi_{ { {\text{0} }^{ { - } } } } }$ 50726.07 0.19214 1274.00 20.8450 4.94470 3.09611 1.0466 23Π (100.00)
        (4)0+ 50726.51 0.18860 2344.54 77.7976 16.5616 29.6976 1.0478 b3Σ(99.82), 23Π (0.18)
        (5)1 50728.05 0.18863 2531.33 412.671 5.20415 61.4752 1.0476 b3Σ(99.92), 23Π (0.08)
        23Π2 50734.85 0.19215 1273.86 20.7903 4.94471 3.09520 1.0467 23Π (100.00)
        ${\text{1} }{}^{\text{3} }{\Sigma}_{ { {\text{0} }^{{ - } } } }^ +$ 51738.08 0.12592 0.0031 13Σ+(100.00)
        ${\text{1} }{}^{\text{5} }{\Sigma}_{ { {\text{0} }^{{ - } } } }^{{ - } }$ 58295.53 0.16981 634.857 167.653 6.51872 192.471 0.1096 15Σ(100.00)
        ${\text{1} }{}^{\text{5} }{\Sigma}_{\text{2} }^{{ - } }$ 58295.55 0.16981 634.862 167.660 6.51884 192.502 0.1096 15Σ(100.00)
        ${\text{1} }{}^{\text{5} }{\Sigma}_{\text{2} }^{{ - } }$ 58295.57 0.16981 634.867 167.669 6.51902 192.550 0.1095 15Σ(100.00)
        DownLoad: CSV

        υ′–υ ${\tilde v}/$cm–1 Aυ′υ′′/s Rυ′υ′′ λυ′υ′′/nm gfυ′υ′′ υ′–υ ${\tilde v} $/cm–1 Aυ′υ′′/s Rυ′υ′′ λυ′υ′′/nm gfυ′υ′′
        0-0 23140.44 7.98×106 0.9912 432.45 0.0067 1-0 25243.77 9.61×104 0.0138 396.42 6.78×10–4
        0-1 20862.55 6.67×104 0.0083 479.67 6.89×10–4 1-1 22965.88 6.80×106 0.9777 435.74 0.0580
        0-2 18684.36 3.86×103 4.79×10–4 535.59 4.97×10–5 1-2 20787.69 4.72×104 0.0068 481.40 4.91×10–4
        0-3 16602.97 4.43×101 5.50×10–6 602.73 7.22×10–7 1-3 18706.30 1.13×104 0.0016 534.96 1.45×10–4
        0-4 14612.08 1.75 2.17×10–7 684.85 3.69×10–8 1-4 16715.40 7.15×101 1.03×10–5 598.68 1.15×10–6
        2-0 27090.98 1.76×103 3.10×10–4 369.39 1.08×10–5 3-0 28588.60 1.08×103 2.66×10–4 350.04 5.95×10–6
        2-1 24813.09 4.31×105 0.0759 403.30 0.0032 3-1 26310.72 1.89×103 4.66×10–4 380.34 1.23×10–5
        2-2 22634.90 5.22×106 0.9192 442.11 0.0458 3-2 24132.53 1.16×106 0.2858 414.67 0.0090
        2-3 20553.51 1.38×103 2.43×10–4 486.88 1.47×10–5 3-3 22051.13 2.80×106 0.6887 453.81 0.0259
        2-4 18562.62 2.46×104 0.0043 539.10 3.21×10–4 3-4 20060.24 4.31×104 0.0106 498.85 4.82×10–4
        2-5 16658.64 1.50×101 2.64×10–6 600.72 2.43×10–7 3-5 18156.26 5.40×104 0.1330 551.17 7.37×10–4
        DownLoad: CSV

        υ′–υ ${\tilde v} $/cm–1 Aυ′υ′′/s Rυ′υ′′ λυ′υ′′/nm gfυ′υ′′ υ′–υ ${\tilde v} $/cm–1 Aυ′υ′′/s Rυ′υ′′ λυ′υ′′/nm gfυ′υ′′
        0-0 11039.58 0.1278 0.9615 906.48 4.72×10–9 1-0 13546.43 0.0081 0.0607 738.73 1.98×10–10
        0-1 8761.69 0.0050 0.0374 1142.14 2.91×10–10 1-1 11268.54 0.1148 0.8613 888.06 4.07×10–9
        0-2 6583.50 1.48×10–4 0.0011 1520.03 1.54×10–11 1-2 9090.35 0.0099 0.0739 1100.85 5.36×10–10
        0-3 4502.11 3.00×10–6 2.25×10–5 2222.76 6.65×10–13 1-3 7008.96 5.33×10–4 0.0040 1427.76 4.88×10–11
        0-4 2511.21 3.32×10–8 2.50×10–7 3984.98 2.37×10–14 1-4 5018.07 1.86×10–5 1.39×10–4 1994.22 3.32×10–12
        2-0 15928.88 2.81×10–5 2.12×10–4 628.24 4.98×10–13 3-0 18182.60 1.94×10–6 1.47×10–5 550.37 2.63×10–14
        2-1 13651.00 0.0152 0.1142 733.07 3.66×10–10 3-1 15904.71 5.54×10–5 4.22×10–4 629.19 9.84×10–13
        2-2 11472.81 0.1023 0.7703 872.25 3.49×10–9 3-2 13726.52 0.0211 0.1607 729.04 5.04×10–10
        2-3 9391.41 0.0141 0.1059 1065.56 7.17×10–10 3-3 11645.13 0.0912 0.6945 859.34 3.03×10–9
        2-4 7400.52 0.0012 0.0089 1352.22 9.71×10–11 3-4 9654.23 0.0168 0.1277 1036.55 8.09×10–10
        DownLoad: CSV

        υ′–υ ${\tilde v} $/cm–1 Aυ′υ′′/s Rυ′υ′′ λυ′υ′′/nm gfυ′υ′′ υ′–υ ${\tilde v} $/cm–1 Aυ′υ′′/s Rυ′υ′′ λυ′υ′′/nm gfυ′υ′′
        0-0 11039.10 0.1878 0.8913 906.52 2.31×10–9 1-0 13546.35 5.67×10–4 0.0030 738.73 4.63×10–12
        0-1 8761.22 0.0216 0.1027 1142.21 4.22×10–10 1-1 11268.46 0.1441 0.7666 888.06 1.70×10–9
        0-2 6583.03 0.0012 0.0058 1520.14 4.24×10–11 1-2 9090.27 0.0391 0.2082 1100.86 7.10×10–10
        0-3 4501.63 4.60×10–5 2.18×10–4 2223.00 3.40×10–12 1-3 7008.88 0.0039 0.0209 1427.78 1.20×10–10
        0-4 2510.74 9.71×10–7 4.61×10–6 3985.72 2.31×10–13 1-4 5017.98 2.33×10–4 0.0012 1994.25 1.39×10–11
        2-0 15929.21 3.36×10–4 0.0020 628.22 1.98×10–12 3-0 18183.37 1.76×10–6 1.12×10–5 550.34 7.97×10–15
        2-1 13651.32 0.0023 0.0142 733.05 1.84×10–11 3-1 15905.48 9.50×10–4 0.0061 629.16 5.63×10–12
        2-2 11473.13 0.1081 0.6354 872.22 1.23×10–9 3-2 13727.29 0.0050 0.0320 728.99 3.99×10–11
        2-3 9391.74 0.0507 0.2982 1065.52 8.62×10–10 3-3 11645.90 0.0817 0.5216 859.28 9.03×10–10
        2-4 7400.84 0.0080 0.0468 1352.16 2.18×10–10 3-4 9655.01 0.0542 0.3464 1036.47 8.72×10–10
        DownLoad: CSV

        υ $ {\text{a}}{}^{\text{3}}{\Pi_{{{\text{0}}^ + }}} $/s a3Π1/s A1Π1/ns
        总和/ns $ {\text{A}}{}^{\text{1}}{\Pi_{\text{1}}}{\text{ - }}{{\text{X}}^{\text{1}}}{\Sigma}_{{{\text{0}}^ + }}^ + $/ns $ {\text{A}}{}^{\text{1}}{\Pi_{\text{1}}} $-$ {\text{a}}{}^{\text{3}}{\Pi_{{{\text{0}}^ + }}} $/s A1Π1– a3Π1/s A1Π1– a3Π2/s
        0 4.75 7.52 124.18 124.18 2.71 111.48 177.04
        1 5.32 7.50 143.86 143.86 3.03 90.08 116.30
        2 5.88 7.53 176.12 176.12 3.58 83.05 192.36
        3 6.39 7.61 246.20 246.20 4.77 93.55 255.19
        4 6.85 7.78
        5 7.27 8.09
        DownLoad: CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

      • [1] Xing Wei, Li Sheng-Zhou, Sun Jin-Feng, Cao Xu, Zhu Zun-Lue, Li Wen-Tao, Li Yue-Yi, Bai Chun-Xu.Theoretical study on spectroscopic properties of 10 Λ-S and 26 Ω states for AlH molecule. Acta Physica Sinica, 2023, 72(16): 163101.doi:10.7498/aps.72.20230615
        [2] Gao Feng, Zhang Hong, Zhang Chang-Zhe, Zhao Wen-Li, Meng Qing-Tian.Accurate theoretical study of potential energy curves, spectroscopic parameters, vibrational energy levels and spin-orbit coupling interaction on SiH+(X1Σ+) ion. Acta Physica Sinica, 2021, 70(15): 153301.doi:10.7498/aps.70.20210450
        [3] Luo Hua-Feng, Wan Ming-Jie, Huang Duo-Hui.Potential energy curves and transition properties for the ground and excited states of BH+ cation. Acta Physica Sinica, 2018, 67(4): 043101.doi:10.7498/aps.67.20172409
        [4] Li Chen-Xi, Guo Ying-Chun, Wang Bing-Bing.Ab initio calculation of the potential curve of B3u- state of O2. Acta Physica Sinica, 2017, 66(10): 103101.doi:10.7498/aps.66.103101
        [5] Huang Duo-Hui, Wan Ming-Jie, Wang Fan-Hou, Yang Jun-Sheng, Cao Qi-Long, Wang Jin-Hua.Potential energy curves and spectroscopic properties of GeS molecules: in ground states and low-lying excited states. Acta Physica Sinica, 2016, 65(6): 063102.doi:10.7498/aps.65.063102
        [6] Huang Duo-Hui, Wang Fan-Hou, Yang Jun-Sheng, Wan Ming-Jie, Cao Qi-Long, Yang Ming-Chao.Potential energy curves and spectroscopic properties of SnO (X1Σ+, a3Π and A1Π) molecule. Acta Physica Sinica, 2014, 63(8): 083102.doi:10.7498/aps.63.083102
        [7] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe.MRCI+Q study on spectroscopic parameters and molecular constants of X1Σ+ and A1Π electronic states of the SiSe molecule. Acta Physica Sinica, 2013, 62(4): 043101.doi:10.7498/aps.62.043101
        [8] Chen Heng-Jie.Potential energy curves and vibrational levels of ground and excited states of LiAl. Acta Physica Sinica, 2013, 62(8): 083301.doi:10.7498/aps.62.083301
        [9] Zhu Zun-Lüe, Lang Jian-Hua, Qiao Hao.Spectroscopic properties and molecular constants of the ground and excited states of SF molecule. Acta Physica Sinica, 2013, 62(16): 163103.doi:10.7498/aps.62.163103
        [10] Li Song, Han Li-Bo, Chen Shan-Jun, Duan Chuan-Xi.Potential energy function and spectroscopic parameters of SN- molecular ion. Acta Physica Sinica, 2013, 62(11): 113102.doi:10.7498/aps.62.113102
        [11] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun Lüe.Potential energy curve and spectroscopic properties of PS (X2Π) radical. Acta Physica Sinica, 2013, 62(20): 203104.doi:10.7498/aps.62.203104
        [12] Guo Yu-Wei, Zhang Xiao-Mei, Liu Yan-Lei, Liu Yu-Fang.Investigation on the potential energy curves and spectroscopic properties of the low-lying excited states of BP. Acta Physica Sinica, 2013, 62(19): 193301.doi:10.7498/aps.62.193301
        [13] Wang Jie-Min, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lue, Li Wen-Tao.Theoretical investigation on molecular constants of PH, PD and PT molecules. Acta Physica Sinica, 2012, 61(6): 063104.doi:10.7498/aps.61.063104
        [14] Shi De-Heng, Niu Xiang-Hong, Sun Jin-Feng, Zhu Zun-Lue.Spectroscopic parameters and molecular constants of X1+ and a3 electronic states of BF radical. Acta Physica Sinica, 2012, 61(9): 093105.doi:10.7498/aps.61.093105
        [15] Liu Hui, Xing Wei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng.Study on spectroscopic parameters and molecular constants of CS+(X2Σ+) and CS+(A2Π) by MRCI. Acta Physica Sinica, 2011, 60(4): 043102.doi:10.7498/aps.60.043102
        [16] Wang Jie-Min, Sun Jin-Feng.Multireference configuration interaction study on spectroscopic parameters and molecular constants of AsN(X1 +) radical. Acta Physica Sinica, 2011, 60(12): 123103.doi:10.7498/aps.60.123103
        [17] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng.Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101.doi:10.7498/aps.60.063101
        [18] Wang Xin-Qiang, Yang Chuan-Lu, Su Tao, Wang Mei-Shan.Analytical potential energy functions and spectroscopic properties of the ground and excited states of BH molecule. Acta Physica Sinica, 2009, 58(10): 6873-6878.doi:10.7498/aps.58.6873
        [19] Gao Feng, Yang Chuan_Lu, Zhang Xiao_Yan.MRCI potential curves and analytical potential energy functions of the low-lying excited states (1∏,3∏) of ZnHg. Acta Physica Sinica, 2007, 56(5): 2547-2552.doi:10.7498/aps.56.2547
        [20] Qian Qi, Yang Chuan-Lu, Gao Feng, Zhang Xiao-Yan.Multi-reference configuration interaction study on analytical potential energy function and spectroscopic constants of XOn(X=S,Cl; n=0,±1). Acta Physica Sinica, 2007, 56(8): 4420-4427.doi:10.7498/aps.56.4420
      Metrics
      • Abstract views:3839
      • PDF Downloads:78
      • Cited By:0
      Publishing process
      • Received Date:07 January 2022
      • Accepted Date:07 February 2022
      • Available Online:15 February 2022
      • Published Online:20 May 2022

        返回文章
        返回
          Baidu
          map