Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Yang Guang, Liu Qi, Nie Min, Liu Yuan-Hua, Zhang Mei-Ling
    PDF
    HTML
    Get Citation
    • Entanglement swapping (ES) based multi-hop quantum information transmission is a fundamental way to realize long-distance quantum communication. However, in the conventional quantum networks, the entanglement in one degree of freedom (DOF) of photon system is usually used as a quantum channel, showing disadvantages of low capacity and susceptibility to noise. In this paper, we present an efficient multi-hop quantum hyperentanglement swapping (HES) method based on hyperentanglement, which utilizes the entangled photos in polarization and spatial-mode DOFs to establish the hyperentangled multi-hop quantum channel. Taking long-distance hyperentanglement based quantum teleportation for example, we first describe a basic hop by hop HES scheme. Then, in order to reduce the end-to-end delay of this scheme, we propose a simultaneous HES (SHES) scheme, in which the intermediate quantum nodes perform hyperentangled Bell state measurements concurrently. On the basis of this scheme, we further put forward a hierarchical SHES (HSHES) scheme that can reduce the classical information cost. Theoretical analysis and simulation results show that the end-to-end delay of HSHES is similar to that of SHES, meanwhile, the classical information cost of HSHES is much lower than that of SHES, showing a better tradeoff between the two performance metrics. Compared with the traditional ES methods, the scheme proposed in this paper is conductive to meeting the requirements for long-distance hyperentanglement based quantum communication, which has positive significance for building more efficient quantum networks in the future.
          Corresponding author:Liu Qi,valenti_67@foxmail.com
        • Funds:Project supported by the National Natural Science Foundation of China (Grant Nos. 61971348, 61201194) and the Natural Science Basic Research Program of Shaanxi Provence, China (Grant No. 2021JM-464).
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

      • B和C的量子态 编码结果 AD的量子态 Bob的幺正变换
        $ \left| {{\phi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^{\text{ + }}}} \right\rangle _{S} $ 0000 $ \left| {{\phi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^{\text{ + }}}} \right\rangle _{S} $ $ {U_1} = \sigma _I^P \otimes \sigma _I^S $
        $ \left| {{\phi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $ 0001 $ \left| {{\phi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $ $ {U_2} = \sigma _I^P \otimes \sigma _Z^S $
        $ \left| {{\phi ^ - }} \right\rangle _{P} \left| {{\phi ^ + }} \right\rangle _{S} $ 0010 $ \left| {{\phi ^ - }} \right\rangle _{P} \left| {{\phi ^ + }} \right\rangle _{S} $ $ {U_3} = \sigma _Z^P \otimes \sigma _I^S $
        $ \left| {{\phi ^ - }} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $ 0011 $ \left| {{\phi ^ - }} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $ $ {U_4} = \sigma _Z^P \otimes \sigma _Z^S $
        $ \left| {{\psi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^{\text{ + }}}} \right\rangle _{S} $ 0100 $ \left| {{\psi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^{\text{ + }}}} \right\rangle _{S} $ $ {U_5} = \sigma _X^P \otimes \sigma _I^S $
        $ \left| {{\psi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $ 0101 $ \left| {{\psi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $ $ {U_6} = \sigma _X^P \otimes \sigma _Z^S $
        $ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\phi ^ + }} \right\rangle _{S} $ 0110 $ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\phi ^ + }} \right\rangle _{S} $ ${U_7} = - {{i}}\sigma _Y^P \otimes \sigma _I^S$
        $ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $ 0111 $ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $ ${U_8} = - {{i}}\sigma _Y^P \otimes \sigma _Z^S$
        $ \left| {{\phi ^{\text{ + }}}} \right\rangle _{p} \left| {{\psi ^{\text{ + }}}} \right\rangle _{S} $ 1000 $ \left| {{\phi ^{\text{ + }}}} \right\rangle _{p} \left| {{\psi ^{\text{ + }}}} \right\rangle _{S} $ $ {U_9} = \sigma _I^P \otimes \sigma _X^S $
        $ \left| {{\phi ^{\text{ + }}}} \right\rangle _{p} \left| {{\psi ^ - }} \right\rangle _{S} $ 1001 $ \left| {{\phi ^{\text{ + }}}} \right\rangle _{p} \left| {{\psi ^ - }} \right\rangle _{S} $ ${U_{10} } = \sigma _I^P \otimes - {{i}}\sigma _Y^S$
        $ \left| {{\phi ^ - }} \right\rangle _{p} \left| {{\psi ^ + }} \right\rangle _{S} $ 1010 $ \left| {{\phi ^ - }} \right\rangle _{p} \left| {{\psi ^ + }} \right\rangle _{S} $ $ {U_{11}} = \sigma _Z^P \otimes \sigma _X^S $
        $ \left| {{\phi ^ - }} \right\rangle _{p} \left| {{\psi ^ - }} \right\rangle _{S} $ 1011 $ \left| {{\phi ^ - }} \right\rangle _{p} \left| {{\psi ^ - }} \right\rangle _{S} $ ${U_{12} } = \sigma _Z^P \otimes - {{i}}\sigma _Y^S$
        $ \left| {{\psi ^ + }} \right\rangle _{P} \left| {{\psi ^ + }} \right\rangle _{S} $ 1100 $ \left| {{\psi ^ + }} \right\rangle _{P} \left| {{\psi ^ + }} \right\rangle _{S} $ $ {U_{13}} = \sigma _X^P \otimes \sigma _X^S $
        $ \left| {{\psi ^ + }} \right\rangle _{P} \left| {{\psi ^ - }} \right\rangle _{S} $ 1101 $ \left| {{\psi ^ + }} \right\rangle _{P} \left| {{\psi ^ - }} \right\rangle _{S} $ ${U_{14} } = \sigma _X^P \otimes - {{i}}\sigma _Y^S$
        $ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\psi ^ + }} \right\rangle _{S} $ 1110 $ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\psi ^ + }} \right\rangle _{S} $ ${U_{15} } = - {{i}}\sigma _Y^P \otimes \sigma _X^S$
        $ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\psi ^ - }} \right\rangle _{S} $ 1111 $ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\psi ^ - }} \right\rangle _{S} $ ${U_{16} } = - {{i}}\sigma _Y^P \otimes - {\rm{i} }\sigma _Y^S$
        DownLoad: CSV

        N1,N2, ···NN– 1测量结果 Alice的幺正变换
        $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $ $ {U_1} = \sigma _I^P \otimes \sigma _I^S $
        $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $ $ {U_2} = \sigma _I^P \otimes \sigma _Z^S $
        $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $ $ {U_3} = \sigma _I^P \otimes \sigma _X^S $
        $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $ $ {U_4} = \sigma _I^P \otimes - i\sigma _Y^S $
        $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $ $ {U_5} = \sigma _I^P \otimes \sigma _I^S $
        $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $ $ {U_6} = \sigma _Z^P \otimes \sigma _Z^S $
        $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $ $ {U_7} = \sigma _Z^P \otimes \sigma _X^S $
        $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $ $ {U_8} = \sigma _Z^P \otimes - i\sigma _Y^S $
        $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $ $ {U_9} = \sigma _X^P \otimes \sigma _I^S $
        $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $ $ {U_{10}} = \sigma _X^P \otimes \sigma _Z^S $
        $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $ $ {U_{11}} = \sigma _X^P \otimes \sigma _X^S $
        $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $ $ {U_{12}} = \sigma _X^P \otimes - i\sigma _Y^S $
        $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $ $ {U_{13}} = - i\sigma _Y^P \otimes \sigma _I^S $
        $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $ $ {U_{14}} = - i\sigma _Y^P \otimes \sigma _Z^S $
        $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $ $ {U_{15}} = - i\sigma _Y^P \otimes \sigma _X^S $
        $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $ $ {U_{1{\text{6}}}} = - i\sigma _Y^P \otimes - i\sigma _Y^S $
        DownLoad: CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

      • [1] Liu Ran, Wu Ze, Li Yu-Chen, Chen Yu-Quan, Peng Xin-Hua.Experimentally characterizing multiparticle entanglement based on measuring quantum Fisher information. Acta Physica Sinica, 2023, 72(11): 110305.doi:10.7498/aps.72.20230356
        [2] Wei Rong-Yu, Li Jun, Zhang Da-Ming, Wang Wei-Hao.Research on method of constant false alarm rate of entangled state quantum detection system. Acta Physica Sinica, 2022, 71(1): 010303.doi:10.7498/aps.71.20211121
        [3] .Research on Constant False Alarm Detection Method of Entangled State Quantum Detection System. Acta Physica Sinica, 2021, (): .doi:10.7498/aps.70.20211121
        [4] Li Juan, Li Jia-Ming, Cai Chun-Xiao, Sun Heng-Xin, Liu Kui, Gao Jiang-Rui.Enhancement of continuous-variable hyperentanglement by optimizing pump mode. Acta Physica Sinica, 2019, 68(3): 034204.doi:10.7498/aps.68.20181625
        [5] Nie Min, Wei Rong-Yu, Yang Guang, Zhang Mei-Ling, Sun Ai-Jing, Pei Chang-Xing.An adaptive quantum state-hopping communication strategy based on kangaroo entanglement hopping model. Acta Physica Sinica, 2019, 68(11): 110301.doi:10.7498/aps.68.20190163
        [6] Zhu Hao-Nan, Wu De-Wei, Li Xiang, Wang Xiang-Lin, Miao Qiang, Fang Guan.Path-entanglement microwave signals detecting method based on entanglement witness. Acta Physica Sinica, 2018, 67(4): 040301.doi:10.7498/aps.67.20172164
        [7] Zong Xiao-Lan, Yang Ming.Scheme for protecting multipartite quantum entanglement. Acta Physica Sinica, 2016, 65(8): 080303.doi:10.7498/aps.65.080303
        [8] Chen Peng, Cai You-Xun, Cai Xiao-Fei, Shi Li-Hui, Yu Xu-Tao.Quantum channel establishing rate model of quantum communication network based on entangled states. Acta Physica Sinica, 2015, 64(4): 040301.doi:10.7498/aps.64.040301
        [9] Ding Dong, He Ying-Qiu, Yan Feng-Li, Gao Ting.Generation of six-photon hyperentangled states. Acta Physica Sinica, 2015, 64(16): 160301.doi:10.7498/aps.64.160301
        [10] Ren Bao-Cang, Deng Fu-Guo.Hyper-parallel photonic quantum computation and manipulation on hyperentangled states. Acta Physica Sinica, 2015, 64(16): 160303.doi:10.7498/aps.64.160303
        [11] Yang Guang, Lian Bao-Wang, Nie Min.Characteristics of multi-hop noisy quantum entanglement channel and optimal relay protocol. Acta Physica Sinica, 2015, 64(24): 240304.doi:10.7498/aps.64.240304
        [12] Zhao Jian-Hui, Wang Hai-Tao.Quantum phase transition and ground state entanglement of the quantum spin system: a MERA study. Acta Physica Sinica, 2012, 61(21): 210502.doi:10.7498/aps.61.210502
        [13] Hu Yao-Hua.Entropy exchange and entanglement in the multi-photon J-C model of a moving atom. Acta Physica Sinica, 2012, 61(12): 120302.doi:10.7498/aps.61.120302
        [14] Li Wei, Fan Ming-Yu, Wang Guang-Wei.Arbitrated quantum signature scheme based on entanglement swapping. Acta Physica Sinica, 2011, 60(8): 080302.doi:10.7498/aps.60.080302
        [15] Wang Hai-Xia, Yin Wen, Wang Fang-Wei.Measurement of entanglement in coupled dots. Acta Physica Sinica, 2010, 59(8): 5241-5245.doi:10.7498/aps.59.5241
        [16] Tang You-Liang, Liu Xiang, Zhang Xiao-Wei, Tang Xiao-Fang.Teleportation of the M-particle entangled state by using one entangled state. Acta Physica Sinica, 2008, 57(12): 7447-7451.doi:10.7498/aps.57.7447
        [17] Wang Ju-Xia, Yang Zhi-Yong, An Yu-Ying.The entanglement states transfer and preservation in the process of two-level atoms interacting with multi-mode light fields. Acta Physica Sinica, 2007, 56(11): 6420-6426.doi:10.7498/aps.56.6420
        [18] Feng Fa-Yong, Zhang Qiang.Quantum key distribution based on hyperentanglement swapping. Acta Physica Sinica, 2007, 56(4): 1924-1927.doi:10.7498/aps.56.1924
        [19] Yang Yu-Guang, Wen Qiao-Yan, Zhu Fu-Chen.Multi-party multi-level quantum key distribution protocol based on entanglement swapping. Acta Physica Sinica, 2005, 54(12): 5544-5548.doi:10.7498/aps.54.5544
        [20] SHI MING-JUN, DU JIANG-FENG, ZHU DONG-PEI.ENTANGEMENT OF QUANTUM PURE STATES. Acta Physica Sinica, 2000, 49(5): 825-829.doi:10.7498/aps.49.825
      Metrics
      • Abstract views:3890
      • PDF Downloads:64
      • Cited By:0
      Publishing process
      • Received Date:25 November 2021
      • Accepted Date:11 January 2022
      • Available Online:21 February 2022
      • Published Online:20 May 2022

        返回文章
        返回
          Baidu
          map