-
The characteristics, the formations and loss mechanisms of different particles of hollow cathode discharge in oxygen at 266 Pa are investigated by using the fluid model. The model contains 11 kinds of particles and 48 reactions. Under this simulation condition, the negative glow regions corresponding to the surrounding cathodes overlap. The results show that there is a strong hollow cathode effect. The density distributions of different charged and active particles are calculated. The charged particle density is located mainly in the central region of the discharge cell. Electrons and O –are the main ingredients of negative charges in the discharge system, and their density peaks are 5.0 × 10 11cm –3and 1.6 × 10 11cm –3, respectively and
${\rm{O}}_2^+ $ is a main composition of positive charge in the discharge system with a peak density of 6.5 × 10 11cm –3. Abundant active oxygen particles exist in the discharge system, and their density is much higher than those of other charged particles. According to the densities of active particles, their magnitudes are ranked in the small-to-large order as O, O 2(a 1Δ g), O( 1D) and O 3. Furthermore, the generation and consumption mechanism of electrons, O –and${\rm{O}}_2^+ $ are calculated in detail, and the generation and consumption paths of different active oxygen particles are also given. The results show that there is a complex coupling process among these particles. Each reaction generates a certain number of particles and consumes other particles at the same time, resulting in a dynamic balance among these particles.-
Keywords:
- hollow cathode discharge/
- oxygen/
- fluid model/
- active particles/
- generation and consumption mechanism
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] -
反应标号 反应方程 反应标号 反应方程 G1 e + O2→ 2O + e[23] G25 O3+ O(1D) → O2+ 2O[26] G2 e + O2→ ${\rm{O}}_2^+ $ + 2e[23] G26 O3+ O(1D) → 2O2[26] G3 e + O–→ O + 2e[23] G27 ${\rm{O}}_2^ + $ + O2+ O2→ ${\rm{O}}_4^+ $ + O2[29] G4 e + O2→O + O(1D) + e[23] G28 ${\rm{O}}_4^+$ + O2→ ${\rm{O}}_2^ + $ + O2+ O2[30] G5 e + O → O(1D) + e[23] G29 ${\rm{O}}_4^ + $ + O → ${\rm{O}}_2^ + $ + O3[29] G6 e + O2(a1∆g) → 2O + e[24] G30 e + O(1D) → O + e[23] G7 e + O2→ O–+ O[23] G31 O3+ O2→ 2O2+ O[25] G8 e + O3→ ${\rm{O}}_2^ -$ + O[23] G32 O–+ O2(a1∆g) → O3+ e[23] G9 e + ${\rm{O} }_2^ +$ → 2O[25] G33 O–+ O2(a1∆g) → ${\rm{O}}_2^ - $ + O[23] G10 O–+ ${\rm{O} }_2^+$ → 3O[25] G34 O3+ O → O2(a1∆g) + O2[31] G11 O–+ O → e + O2[25] G35 O3+ O(1D) → O2(a1∆g) + O2[32] G12 O–+ O2→ O3+ e[25] G36 O3+ O(1D) → 2O2(a1∆g)[32] G13 ${\rm{O}}_2^ + $ + ${\rm{O}}_2^ - $ → 2O2[26] G37 ${\rm{O}}_4^ + $ + ${\rm{O}}_3^ - $ → 3O2+ O[33] G14 O3+ O → 2O2[25] G38 ${\rm{O}}_4^ + $ + O–→ O2+ O3[33] G15 O3+ ${\rm{O}}_2^ - $→ ${\rm{O}}_3^ - $ + O2[26] G39 ${\rm{O}}_4^ + $ + O2(a1∆g) → ${\rm{O}}_2^ + $ + O2+ O2[29] G16 O–+ O3→ ${\rm{O}}_3^ - $ + O[26] G40 e +${\rm{O}}_4^ + $ → O2+ O2[34] G17 ${\rm{O}}_3^ - $ + O → ${\rm{O}}_2^ - $ + O2[27] G41 ${\rm{O}}_4^ + $ + ${\rm{O}}_2^ - $→ 3O2[33] G18 ${\rm{O}}_3^ - $ + ${\rm{O}}_2^+ $ → O3+ 2O[28] G42 ${\rm{O}}_4^ + $ + O–→ O + O2+ O2[35] G19 O2(a1∆g) + O2→ 2O2[25] G43 ${\rm{O}}_4^ + $ + ${\rm{O}}_2^ - $ → O + O + O2+ O2[35] G20 O2(a1∆g) + O → O + O2[25] G44 ${\rm{O}}_4^ + $ + ${\rm{O}}_3^ - $→ O3+ O2+ O2[35] G21 O(1D) + O → 2O[23] G45 ${\rm{O}}_2^ - $ + O → O–+ O2[32] G22 O(1D) + O2→ O + O2[26] G46 O + O + O2→ O + O3[36] G23 O(1D) + O2→ O + O2(a1∆g)[26] G47 O + O2+ O2→ O2+ O3[36] G24 O3+ O2(a1∆g) → 2O2+ O[25] G48 O + O2+ O3→ O3+ O3[36] 电子生成反应 贡献/% 电子消耗反应 贡献/% G2: e + O2→ ${\rm{O}}_2^+ $+ 2e 99.875 G7: e + O2→ O–+ O 42.418 G11: O–+ O → e + O2 0.114 G40: e + ${\rm{O}}_4^+ $→ O2+ O2 31.748 G12: O–+ O2→ O3+ e 0.008 G9: e + ${\rm{O}}_2^+ $ → 2O 25.808 G32: O–+ O2(a1∆g) → O3+ e 0.002 G8: e + O3→ ${\rm{O}}_2^- $ + O 0.026 G3: e + O–→ O + 2e 7.0 × 10–4 O–生成反应 贡献/% O–消耗反应 贡献/% G7: e + O2→ O–+ O 99.998 G10: O–+${\rm{O} }_2^+ $ → 3O 86.712 G45: ${\rm{O} }_2^- $ + O → O–+ O2 0.002 G11: O–+ O → e + O2 8.548 G38: ${\rm{O} }_4^+ $ + O–→ O2+ O3 3.809 G12: O–+ O2→ O3+ e 0.631 G32: O–+ O2(a1∆g) → O3+ e 0.135 G42: ${\rm{O} }_4^+ $ + O–→ O + O2+ O2 0.055 G3: e + O–→ O + 2e 0.055 G33: O–+ O2(a1∆g) → ${\rm{O} }_2^- $ + O 0.045 G16: O–+ O3→ ${\rm{O} }_3^- $ + O 0.011 ${\rm{O} }_2^+ $生成反应 贡献/% ${\rm{O} }_2^+ $消耗反应 贡献/% G2: e + O2→ ${\rm{O} }_2^+ $ + 2e 99.993 G27: ${\rm{O} }_2^+ $ + O2+ O2→ ${\rm{O} }_4^+ $ + O2 44.657 G28: ${\rm{O} }_4^+ $ + O2→ ${\rm{O} }_2^+ $ + O2+ O2 0.007 G9: e + ${\rm{O} }_2^+ $ → 2O 30.675 G29: ${\rm{O} }_4^+ $ + O → ${\rm{O} }_2^+ $ + O3 5.8×10–4 G10: O–+ ${\rm{O} }_2^+ $ → 3O 24.634 G39: ${\rm{O} }_4^+ $ + O2(a1∆g)→${\rm{O} }_2^+ $ + O2+ O2 6.9×10–6 G13: ${\rm{O} }_2^+ $ + ${\rm{O} }_2^- $ → 2O2 0.032 G18: ${\rm{O} }_3^-$ +${\rm{O} }_2^+ $ → O3+ 2O 0.002 O生成反应 贡献/% O消耗反应 贡献/% G4: e + O2→ O + O(1D) + e 45.255 G5: e + O → O(1D) + e 56.855 G22: O(1D) + O2→ O + O2 39.217 G11: O–+ O → e + O2 26.231 G1: e + O2→ 2O + e 8.725 G47: O2+ O2+ O → O2+ O3 16.765 G23:O(1D) + O2→O + O2(a1∆g) 5.602 G29: ${\rm{O} }_4^+ $ + O → ${\rm{O} }_2^+ $ + O3 0.135 G7: e + O2→ O–+ O 0.567 G45: ${\rm{O} }_2^-$ + O→ O–+ O2 0.012 G9: e +${\rm{O} }_2^+ $ → 2O 0.345 G46: O + O + O2→ O + O3 0.001 G10: O–+ ${\rm{O} }_2^+ $ → 3O 0.277 G17: ${\rm{O} }_3^- $ + O → ${\rm{O} }_2^- $ + O2 7.7 × 10–4 其他 0.012 G14: O3+ O → 2O2 3.4 × 10–4 G34: O3+ O→O2(a1∆g) + O2 1.9 × 10–4 G48: O + O2+ O3→ O3+ O3 6.0 × 10–7 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47]
Catalog
Metrics
- Abstract views:4119
- PDF Downloads:70
- Cited By:0