-
Evaluating the importance of nodes in complex networks is an important topic in the research of network characteristics. Its relevant research has a wide range of applications, such as network supervision and rumor control. At present, many methods have been proposed to evaluate the importance of nodes in complex networks, but most of them have the deficiency of one-sided evaluation or too high time complexity. In order to break through the limitations of existing methods, in this paper a novel method of evaluating the importance of complex network nodes is proposed based on Tsallis entropy. This method takes into account both the local and global topological information of the node. It considers the structural hole characteristics and K-shell centrality of the node and fully takes into account the influence of the node itself and its neighboring nodes. To illustrate the effectiveness and applicability of this method, eight real networks are selected from different fields and five existing methods of evaluating node importance are used as comparison methods. On this basis, the monotonicity index, SIR (susceptible-infectious-recovered) model, and Kendall correlation coefficient are used to illustrate the superiority of this method and the relationship among different methods. Experimental results show that this method can effectively and accurately evaluate the importance of nodes in complex networks, distinguish the importance of different nodes significantly, and can show good accuracy of evaluating the node importance under different proportions of nodes. In addition, the time complexity of this method is
$ O({n^2}) $ , which is suitable for large-scale complex networks.-
Keywords:
- node importance/
- Tsallis entropy/
- structural hole/
- K-shell
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] -
Algorithm 1:TSM algorithm. Input: Network $ G(V, E) $
Output: TSM value for each node
1. Find neighboring nodes $\varGamma (i)$of node $ {v_i} $
2. Compute the restraint coefficient ${\rm{RC}}_i$ of node $ {v_i} $
3. Compute the ${\rm Ks}_i$ value of node $ {v_i} $according to formula $k_i^{\rm m} = k_i^{\rm r} + \lambda k_i^{\rm e}$
4. Compute $ {q_i} $ for node $ {v_i} $
5.Fornode $ {v_j} $ in $\varGamma (i)$ do
6. ratio = ($1 - {\rm{RC}}_j$)/${\rm{sum}}$($1 - {\rm{RC}}$(all neighbors of $ {v_i} $))
7. $ T({v_i}) $= (pow(ratio, $ {q_i} $)-ratio)/(1 – $ {q_i} $)
8.End For
9. Compute ${\rm{IC} }\left( { {v_i} } \right) = \left( {1 - {\rm{RC} }_i } \right)*T\left( { {v_i} } \right)$
10.Fornode $ {v_j} $ in $\varGamma (i)$ do
11. ${\rm{Cnc}}\left( { {v_i} } \right) = {\rm{sum}}\left( {{\rm{IC}}\left( { {v_j} } \right)} \right)$
12.End For
13.Fornode $ {v_j} $ in $\varGamma (i)$ do
14. ${\rm{TSM}}\left( { {v_i} } \right) = {\rm{sum}}\left( {{\rm{Cnc}}\left( { {v_j} } \right)} \right)$
15.End ForMethod Category Time complexity $ {\text{DC}} $ Local $ O(n) $ $ {\text{BC}} $ Global $ O({n^3}) $or$ O(nm) $ $ {\text{MDD}} $ Global $ O(n) $ ${\text{N-Burt} }$ Local $ O({n^2}) $ $ {\text{Cnc + }} $ Hybrid $ O(n) $ $ {\text{AAD}} $ Hybrid $ O({n^3}) $ or $ O(nm) $ $ {\text{IKS}} $ Hybrid $ O(n) $ $ {\text{TSM}} $ Hybrid $ O({n^2}) $ Network $ n $ $ m $ $\langle k \rangle$ $ c $ $\langle d \rangle$ ${\beta _{\rm th} }$ $\beta $ Karate 34 78 4.5880 0.5706 2.4082 0.1287 0.25 Dolphins 62 159 5.1290 0.2590 3.3570 0.1470 0.15 Polbooks 105 441 8.4000 0.4880 3.0788 0.0838 0.10 Jazz 198 2742 27.6970 0.6175 2.2350 0.0259 0.04 USAir 332 2126 12.8072 0.7494 2.7381 0.0225 0.03 C.Elegans 453 2025 8.9404 0.6465 2.4553 0.0249 0.03 Email 1133 5451 9.6222 0.2540 3.6060 0.0535 0.05 PowerGrid 4941 6594 2.6691 0.0801 18.9892 0.2583 0.25 排名 节点 DC 节点 BC 节点 MDD 节点 N-Burt 节点 Cnc+ 节点 AAD 节点 IKS 节点 TSM 1 ${v_{34}}$ 17 ${v_1}$ 0.4119 ${v_{34}}$ 11.9 ${v_{34}}$ 0.1682 ${v_{34}}$ 1156 ${v_{34}}$ 17.4666 ${v_1}$ 1.5215 ${v_{34}}$ 89.8687 2 ${v_1}$ 16 ${v_{34}}$ 0.2862 ${v_1}$ 11.2 ${v_1}$ 0.1731 ${v_1}$ 1024 ${v_1}$ 16.4976 ${v_{34}}$ 1.4782 ${v_1}$ 81.8535 3 ${v_{33}}$ 12 ${v_{33}}$ 0.1367 ${v_{33}}$ 8.7 ${v_3}$ 0.2257 ${v_{33}}$ 576 ${v_{33}}$ 12.6498 ${v_3}$ 1.2610 ${v_{33}}$ 72.0759 4 ${v_3}$ 10 ${v_3}$ 0.1352 ${v_3}$ 7.6 ${v_{33}}$ 0.2746 ${v_3}$ 400 ${v_3}$ 10.7712 ${v_{33}}$ 1.2307 ${v_3}$ 70.7235 5 ${v_2}$ 9 ${v_{32}}$ 0.1301 ${v_2}$ 6.9 ${v_{32}}$ 0.2793 ${v_2}$ 324 ${v_2}$ 9.8490 ${v_2}$ 1.0208 ${v_2}$ 59.4435 6 ${v_4}$ 6 ${v_9}$ 0.0526 ${v_4}$ 5.1 ${v_9}$ 0.3266 ${v_4}$ 144 ${v_4}$ 7.2111 ${v_9}$ 0.9425 ${v_9}$ 47.6431 7 ${v_{32}}$ 6 ${v_2}$ 0.0508 ${v_{32}}$ 5.1 ${v_2}$ 0.3357 ${v_{32}}$ 108 ${v_{32}}$ 6.7095 ${v_{14}}$ 0.9411 ${v_{14}}$ 46.9374 8 ${v_9}$ 5 ${v_{14}}$ 0.0432 ${v_{14}}$ 5 ${v_{14}}$ 0.3541 ${v_9}$ 100 ${v_9}$ 6.4033 ${v_{32}}$ 0.9004 ${v_4}$ 45.5295 9 ${v_{14}}$ 5 ${v_{20}}$ 0.0306 ${v_9}$ 4.7 ${v_{28}}$ 0.3674 ${v_{14}}$ 100 ${v_{14}}$ 6.4033 ${v_4}$ 0.8343 ${v_{32}}$ 41.3938 10 ${v_{24}}$ 5 ${v_6}$ 0.0282 ${v_{24}}$ 4.1 ${v_{31}}$ 0.3810 ${v_{24}}$ 75 ${v_{24}}$ 5.8310 ${v_{31}}$ 0.7137 ${v_{31}}$ 37.1209 11 ${v_6}$ 4 ${v_7}$ 0.0282 ${v_8}$ 4 ${v_{20}}$ 0.3935 ${v_8}$ 64 ${v_{31}}$ 5.6569 ${v_{24}}$ 0.7027 ${v_8}$ 35.7453 12 ${v_7}$ 4 ${v_{28}}$ 0.0210 ${v_{31}}$ 4 ${v_{29}}$ 0.4115 ${v_{31}}$ 64 ${v_8}$ 5.6569 ${v_8}$ 0.6996 ${v_{24}}$ 33.3428 13 ${v_8}$ 4 ${v_{24}}$ 0.0166 ${v_{28}}$ 3.7 ${v_{24}}$ 0.4348 ${v_6}$ 48 ${v_6}$ 5.0001 ${v_{20}}$ 0.6397 ${v_{28}}$ 29.9028 14 ${v_{28}}$ 4 ${v_{31}}$ 0.0136 ${v_{30}}$ 3.7 ${v_4}$ 0.4684 ${v_7}$ 48 ${v_7}$ 5.0001 ${v_{30}}$ 0.6050 ${v_{20}}$ 29.6927 15 ${v_{30}}$ 4 ${v_4}$ 0.0112 ${v_6}$ 3.4 ${v_{26}}$ 0.4845 ${v_{28}}$ 48 ${v_{28}}$ 5.0000 ${v_{28}}$ 0.6039 ${v_{30}}$ 29.1552 Network $ M{\text{(DC)}} $ M(BC) M(MDD) $M{\text{(N-Burt)} }$ $ M{\text{(Cnc + )}} $ M(ADD) $ M{\text{(IKS)}} $ $ M{\text{(TSM)}} $ Karate 0.7079 0.7723 0.7536 0.9542 0.9472 0.8395 0.9612 0.9542 Dolphins 0.8312 0.9623 0.9041 0.9623 0.9895 0.9623 0.9905 0.9979 Polbooks 0.8252 0.9974 0.9077 1 0.9971 0.9996 1 1 Jazz 0.9659 0.9885 0.9883 0.9983 0.9993 0.9981 0.9994 0.9994 USAir 0.8586 0.6970 0.8871 0.9453 0.9945 0.9068 0.9943 0.9951 C.Elegans 0.7922 0.8740 0.8748 0.9983 0.9980 0.9381 0.9974 0.9990 Email 0.8874 0.9400 0.9229 0.9650 0.9991 0.9629 0.9995 0.9999 PowerGrid 0.5927 0.8313 0.6928 0.8770 0.9568 0.8748 0.9667 0.9999 Network $\tau ({\text{DC, }}\sigma {\text{)}}$ $\tau ({\text{BC, }}\sigma {\text{)}}$ $\tau ({\text{MDD, }}\sigma {\text{)}}$ $\tau ({\text{N-Burt, } }\sigma {\text{)} }$ $\tau ({\text{Cnc + , }}\sigma {\text{)}}$ $\tau ({\text{AAD, }}\sigma {\text{)}}$ $\tau ({\text{IKS, }}\sigma {\text{)}}$ $\tau ({\text{TSM, }}\sigma {\text{)}}$ Karate 0.6435 0.5651 0.6756 0.7683 0.9258 0.6591 0.8445 0.9637 Dolphins 0.7768 0.5643 0.8181 0.7282 0.8611 0.7532 0.8526 0.9492 Polbooks 0.7528 0.3579 0.8029 0.7037 0.9098 0.7691 0.9165 0.9436 Jazz 0.8185 0.4628 0.8503 0.8216 0.9132 0.8235 0.8804 0.9363 USAir 0.6982 0.4744 0.7175 0.7929 0.9047 0.6995 0.9055 0.9461 C.Elegans 0.6376 0.4711 0.6521 0.6251 0.8127 0.659 0.8217 0.8570 Email 0.7911 0.6467 0.8015 0.7735 0.8980 0.7797 0.8758 0.9250 PowerGrid 0.5469 0.4167 0.5786 0.4298 0.7341 0.5563 0.7399 0.8207 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33]
Catalog
Metrics
- Abstract views:6587
- PDF Downloads:191
- Cited By:0