[1] |
Zhang Jia-Hui.Machine learning forin silicoprotein research. Acta Physica Sinica, 2024, 73(6): 069301.doi:10.7498/aps.73.20231618 |
[2] |
Huang Tian-Long, Wu Yong-Zheng, Ni Ming, Wang Shi, Ye Yong-Jin.Effects of quantum noise on Shor’s algorithm. Acta Physica Sinica, 2024, 73(5): 050301.doi:10.7498/aps.73.20231414 |
[3] |
Yang Zhang-Zhang, Liu Li, Wan Zhi-Tao, Fu Jia, Fan Qun-Chao, Xie Feng, Zhang Yi, Ma Jie.Combining machine learning algorithm to improve prediction performance of ab initio method for vibrational energy spectra of HF/HBr/H35Cl/Na35Cl. Acta Physica Sinica, 2023, 72(7): 073101.doi:10.7498/aps.72.20221953 |
[4] |
Guan Xing-Yue, Huang Heng-Yan, Peng Hua-Qi, Liu Yan-Hang, Li Wen-Fei, Wang Wei.Machine learning in molecular simulations of biomolecules. Acta Physica Sinica, 2023, 72(24): 248708.doi:10.7498/aps.72.20231624 |
[5] |
Luo Qi-Rui, Shen Yi-Fan, Luo Meng-Bo.Computer simulation and machine learning of polymer collapse and critical adsorption phase transitions. Acta Physica Sinica, 2023, 72(24): 240502.doi:10.7498/aps.72.20231058 |
[6] |
Li Tian-Yin, Xing Hong-Xi, Zhang Dan-Bo.Quantum computing based high-energy nuclear physics. Acta Physica Sinica, 2023, 72(20): 200303.doi:10.7498/aps.72.20230907 |
[7] |
Ai Fei, Liu Zhi-Bing, Zhang Yuan-Tao.Numerical study of discharge characteristics of atmospheric dielectric barrier discharges by integrating machine learning. Acta Physica Sinica, 2022, 71(24): 245201.doi:10.7498/aps.71.20221555 |
[8] |
Xu Da, Wang Yi-Pu, Li Tie-Fu, You Jian-Qiang.Coherent coupling in a driven qubit-magnon hybrid quantum system. Acta Physica Sinica, 2022, 71(15): 150302.doi:10.7498/aps.71.20220260 |
[9] |
Gao Xue-Er, Li Dai-Li, Liu Zhi-Hang, Zheng Chao.Recent progress of quantum simulation of non-Hermitian systems. Acta Physica Sinica, 2022, 71(24): 240303.doi:10.7498/aps.71.20221825 |
[10] |
Zhou Wen-Hao, Wang Yao, Weng Wen-Kang, Jin Xian-Min.Research progress of integrated optical quantum computing. Acta Physica Sinica, 2022, 71(24): 240302.doi:10.7498/aps.71.20221782 |
[11] |
Wang Chen-Xu, He Ran, Li Rui-Rui, Chen Yan, Fang Ding, Cui Jin-Ming, Huang Yun-Feng, Li Chuan-Feng, Guo Guang-Can.Advances in the study of ion trap structures in quantum computation and simulation. Acta Physica Sinica, 2022, 71(13): 133701.doi:10.7498/aps.71.20220224 |
[12] |
Luo Yu-Chen, Li Xiao-Peng.Quantum simulation of interacting fermions. Acta Physica Sinica, 2022, 71(22): 226701.doi:10.7498/aps.71.20221756 |
[13] |
Chen Yang, Zhang Tian-Yang, Guo Guang-Can, Ren Xi-Feng.Research progress of integrated photonic quantum simulation. Acta Physica Sinica, 2022, 71(24): 244207.doi:10.7498/aps.71.20221938 |
[14] |
Liu Wu, Zhu Cheng-Wan, Li Hao-Tian, Zhao Su-Ling, Qiao Bo, Xu Zheng, Song Dan-Dan.Optimization of Ga content gradient in Cu(In,Ga)Se2solar cells through machine learning and device simulation. Acta Physica Sinica, 2021, 70(23): 238802.doi:10.7498/aps.70.20211234 |
[15] |
Tian Yu-Ling, Feng Tian-Feng, Zhou Xiao-Qi.Collaborative quantum computation with redundant graph state. Acta Physica Sinica, 2019, 68(11): 110302.doi:10.7498/aps.68.20190142 |
[16] |
Yang Le, Li Kai, Dai Hong-Yi, Zhang Ming.A novel scheme of quantum state tomography based on quantum algorithms. Acta Physica Sinica, 2019, 68(14): 140301.doi:10.7498/aps.68.20190157 |
[17] |
Kong Xiang-Yu, Zhu Yuan-Ye, Wen Jing-Wei, Xin Tao, Li Ke-Ren, Long Gui-Lu.New research progress of nuclear magnetic resonance quantum information processing. Acta Physica Sinica, 2018, 67(22): 220301.doi:10.7498/aps.67.20180754 |
[18] |
Zhao Shi-Ping, Liu Yu-Xi, Zheng Dong-Ning.Novel superconducting qubits and quantum physics. Acta Physica Sinica, 2018, 67(22): 228501.doi:10.7498/aps.67.20180845 |
[19] |
Yu Xiang-Min, Tan Xin-Sheng, Yu Hai-Feng, Yu Yang.Topological quantum material simulated with superconducting quantum circuits. Acta Physica Sinica, 2018, 67(22): 220302.doi:10.7498/aps.67.20181857 |
[20] |
Fan Heng.Quantum computation and quantum simulation. Acta Physica Sinica, 2018, 67(12): 120301.doi:10.7498/aps.67.20180710 |