\begin{document}$ {\mathrm{O}}_{5}^{+} $\end{document}, \begin{document}$ {\mathrm{O}}_{4}^{-} $\end{document} and species with uncertainties such as \begin{document}$ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $\end{document}, \begin{document}$ {\mathrm{C}\mathrm{O}}_{4}^{+} $\end{document} are removed from the original model. As for the reduction of specific reactions among species, the reaction proportion analysis based on the calculation of reaction rates is used to obtain the contribution of each reaction to the entire process of CO2 discharge, through which the important reactions can be selected. Finally, a simplified chemistry model of CO2 discharge based on Martian atmospheric conditions, including 16 species and 67 reactions, is established. The numerical simulations show that the trends of species densities based on the simplified chemistry model are highly consistent with those based on the original one, and considerations about the CO2 conversion and the energy efficiency are also in line with expectations, which can help deepen the understanding of the essential process of CO2 discharge under Martian atmospheric conditions. In addition, the quantitative results of the relationship between reactive species will lay a theoretical foundation for the accurate analysis of various products in Martian dust storm discharges and the realization of Mars in-situ oxygen generation technology based on plasma chemistry."> Numerical study on simplified reaction set of ground state species in CO<sub>2</sub> discharges under Martian atmospheric conditions - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Zhang Tai-Heng, Wang Xu-Cheng, Zhang Yuan-Tao
    PDF
    HTML
    Get Citation
    • The exploration of Mars has attracted increasing interest in these years. The experiments and simulations show that strong electric field triggered by the dust storms in the Martian atmosphere may cause CO 2discharge. Studies on this phenomenon will not only help deepen our comprehension on the evolution of Martian surface, but also provide a possibility to realize the in-situoxygen generation on Mars based on plasma chemistry. In this paper, a zero-dimensional global model is used to simplify the complicated description of CO 2chemical kinetics, therefore a reduced chemistry can be obtained for detailed numerical simulation in the near future. At the beginning of simplification, the graph theoretical analysis is used to pre-treat the original model by exploring the relationship between reacting species. Through the study of connectivity and the topological network, species such as O 2, e, and CO prove to be important in the information transmission of the network. While gaining a clearer understanding of the chemistry model, dependence analysis will be used to investigate numerical simulation results. In this way a directed relation diagram can be obtained, where the influence between different species is quantitively explained in terms of numerical solutions. Users could keep different types of species correspondingly according to their own needs, and in this paper, some species with low activeness such as C 2O, $ {\mathrm{O}}_{5}^{+} $ , $ {\mathrm{O}}_{4}^{-} $ and species with uncertainties such as $ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ , $ {\mathrm{C}\mathrm{O}}_{4}^{+} $ are removed from the original model. As for the reduction of specific reactions among species, the reaction proportion analysis based on the calculation of reaction rates is used to obtain the contribution of each reaction to the entire process of CO 2discharge, through which the important reactions can be selected. Finally, a simplified chemistry model of CO 2discharge based on Martian atmospheric conditions, including 16 species and 67 reactions, is established. The numerical simulations show that the trends of species densities based on the simplified chemistry model are highly consistent with those based on the original one, and considerations about the CO 2conversion and the energy efficiency are also in line with expectations, which can help deepen the understanding of the essential process of CO 2discharge under Martian atmospheric conditions. In addition, the quantitative results of the relationship between reactive species will lay a theoretical foundation for the accurate analysis of various products in Martian dust storm discharges and the realization of Mars in-situoxygen generation technology based on plasma chemistry.
          Corresponding author:Zhang Yuan-Tao,ytzhang@sdu.edu.cn
        • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 11975142)
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

        [54]

        [55]

        [56]

        [57]

        [58]

        [59]

        [60]

        [61]

        [62]

        [63]

      • 初始集合粒子构成
        中性粒子 CO2, CO, C, O, O2, O3, C2O
        正离子 $ {\mathrm{C}\mathrm{O}}_{4}^{+} $, $ {\mathrm{C}\mathrm{O}}_{2}^{+} $, CO+, C+, O+, $ {\mathrm{O}}_{2}^{+} $, $ {\mathrm{O}}_{4}^{+} $,
        $ {\mathrm{O}}_{5}^{+} $, $ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $, $ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $, $ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $
        负离子 $ {\mathrm{C}\mathrm{O}}_{4}^{-} $, $ {\mathrm{C}\mathrm{O}}_{3}^{-} $, O, $ {\mathrm{O}}_{2}^{-} $, $ {\mathrm{O}}_{3}^{-} $, $ {\mathrm{O}}_{4}^{-} $
        DownLoad: CSV

        序号 反应 文献
        (X01) e + CO2$ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + 2e [50]
        (X02) e + CO2$ \Rightarrow $ CO + O + e [50]
        (X03) e + CO2$ \Rightarrow $ CO + O [50]
        (X04) e + CO2$ \Rightarrow $ 2e + O + CO+ [50]
        (X05) e + CO2$ \Rightarrow $ 2e + CO + O+ [50]
        (X06) e + CO2$ \Rightarrow $ 2e + C++ O2 [50]
        (X07) e + CO2$ \Rightarrow $ $ {\mathrm{O}}_{2}^{+} $ + C + 2e [51,52]
        (X08) e + CO $ \Rightarrow $ C + O [50]
        (X09) e + CO $ \Rightarrow $ e + C + O [50]
        (X10) e + CO $ \Rightarrow $ 2e + CO+ [50]
        (X11) e + CO $ \Rightarrow $ 2e + C + O+ [50]
        (X12) e + CO $ \Rightarrow $ 2e + C++ O [50]
        (X13) e + O3$ \Rightarrow $ $ {{\mathrm{O}}_{2}^{-}}^{-} $ + O [50]
        (X14) e + O3$ \Rightarrow $ O2+ O [50]
        (X15) e + O3$ \Rightarrow $ O + O2+ e [53]
        (X16) e + O3$ \Rightarrow $ $ {\mathrm{O}}_{2}^{+} $ + O + 2e [53]
        (X17) e + O3$ \Rightarrow $ O++ O+ O + e [53]
        (X18) e + O2$ \Rightarrow $ 2 O + e [50]
        (X19) e + O2$ \Rightarrow $ O + O [50]
        (X20) e + O2$ \Rightarrow $ 2e + $ {\mathrm{O}}_{2}^{+} $ [50]
        (X21) e + O2$ \Rightarrow $ 2e + O + O+ [50]
        (X22) e + O2$ \Rightarrow $ e + O++ O [50,54]
        (X23) e + O $ \Rightarrow $ 2e + O+ [50]
        (X24) e + C $ \Rightarrow $ 2e + C+ [50]
        DownLoad: CSV

        序号 反应 反应速率系数 文献
        (I01) O+ CO2$ \Rightarrow$ O + CO2+ e 4.0 × 10–18 [48]
        (I02) O+ CO2+ CO $ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + CO 1.5 × 10–40 [61]
        (I03) O+ CO2+ O2$ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O2 3.1 × 10–40 [61]
        (I04) O+ CO2+ CO2$ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + CO2 9.0 × 10–41 [52]
        (I05) $ {\mathrm{O}}_{2}^{-} $ + CO2+ O2$ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O2 4.7 × 10–41 [52]
        (I06) $ {\mathrm{O}}_{3}^{-} $+ CO2$ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O2 5.5 × 10–16 [18]
        (I07) $ {\mathrm{O}}_{4}^{-} $ + CO2$ \Rightarrow$ O2+ $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ 4.8 × 10–16 [18]
        (I08) O++ CO2$ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + CO 9.4 × 10–16 [18]
        (I09) O++ CO2$ \Rightarrow$ O + $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ 4.5 × 10–16 [18]
        (I10) C++ CO2$ \Rightarrow$ CO++ CO 1.1 × 10–15 [18]
        (I11) $ {\mathrm{O}}_{2}^{+} $ + CO2+M$ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{4}^{+} $ +M 2.3 × 10–41 [18]
        (I12) $ {\mathrm{O}}_{5}^{+} $ + CO2$ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{4}^{+} $ + O3 1.0 × 10–17 [52]
        (I13) CO++ CO2$ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + CO 1.0 × 10–15 [56]
        (I14) $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + CO2+M$ \Rightarrow$ $ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ +M 3.0 × 10–40 [18]
        (I15) O++ CO $ \Rightarrow$ O + CO+ 4.9 × 10–18(Tg/298)0.5exp(–4580/Tg) [18]
        (I16) C++ CO $ \Rightarrow$ CO++ C 5.0 × 10–19 [18]
        (I17) $ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $ + CO $ \Rightarrow$ CO2+ $ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ 1.1 × 10–15 [18]
        (I18) $ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ + CO $ \Rightarrow$ CO2+ $ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $ 9.0 × 10–16 [18]
        (I19) $ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $ + CO +M$ \Rightarrow$ CO2+ $ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ +M 2.6 × 10–38 [18]
        (I20) $ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ + CO +M$ \Rightarrow$ CO2+ $ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $ +M 4.2 × 10–38 [18]
        (I21) O+ CO $ \Rightarrow$ CO2+ e 5.5 × 10–16 [44]
        (I22) $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + CO $ \Rightarrow$ 2CO2+ e 5.0 × 10–19 [58]
        (I23) $ {\mathrm{O}}_{2}^{+} $ + C $ \Rightarrow$ CO++ O 5.2 × 10–17 [18]
        (I24) $ {\mathrm{O}}_{2}^{+} $ + C $ \Rightarrow$ C++ O2 5.2 × 10–17 [18]
        (I25) CO++ C $ \Rightarrow$ CO + C+ 1.1 × 10–16 [18]
        (I26) O+ C $ \Rightarrow$ CO + e 5.0 × 10–16 [57]
        (I27) $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O $ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + CO 1.638 × 10–16 [52]
        (I28) $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O $ \Rightarrow$ CO2+ O+ 9.62 × 10–17 [18]
        (I29) CO++ O $ \Rightarrow$ CO + O+ 1.4 × 10–16 [18]
        (I30) $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O2 1.1 × 10–16 [18]
        (I31) $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow$ CO2+ O2+ O 1.4 × 10–17 [18]
        (I32) $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow$ CO2+ $ {\mathrm{O}}_{3}^{-} $ 1.4 × 10–16 [18]
        (I33) $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O $ \Rightarrow$ CO2+ $ {\mathrm{O}}_{2}^{-} $ 8.0 × 10–17 [58]
        (I34) $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O2$ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + CO2 6.4 × 10–17 [52]
        (I35) CO++ O2$ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + CO 1.2 × 10–16 [18]
        (I36) C++ O2$ \Rightarrow$ CO + O+ 6.2 × 10–16 [18]
        (I37) C++ O2$ \Rightarrow$ CO++ O 3.8 × 10–16 [18]
        (I38) $ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ + O2$ \Rightarrow$ 2CO + $ {\mathrm{O}}_{2}^{+} $ 5.0 × 10–18 [18]
        (I39) $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O3$ \Rightarrow$ CO2+ $ {\mathrm{O}}_{3}^{-} $ + O2 1.3 × 10–16 [18]
        (I40) $ {\mathrm{C}\mathrm{O}}_{4}^{+} $ + O3$ \Rightarrow$ $ {\mathrm{O}}_{5}^{+} $ + CO2 1.0 × 10–16 [52]
        (I41) $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O$ \Rightarrow$ O + CO2 1.0 × 10–13 [62]
        (I42) $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + $ {\mathrm{O}}_{2}^{-} $ $ \Rightarrow$ CO + O2+ O 6.0 × 10–13 [44]
        (I43) $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ $ \Rightarrow$ 2CO2+ O 5.0 × 10–13 [58]
        (I44) $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ $ \Rightarrow$ 2CO2+ O2 5.0 × 10–13 [18]
        (I45) CO++ $ {\mathrm{O}}_{2}^{-} $ $ \Rightarrow$ CO + O2 2.0 × 10–13 [55]
        (I46) C++ O$ \Rightarrow$ C + O 5.0 × 10–14 [55]
        (I47) C++ $ {\mathrm{O}}_{2}^{-} $ $ \Rightarrow$ C + O2 5.0 × 10–14 [55]
        (I48) O+ CO+$ \Rightarrow$ CO + O 1.0 × 10–13 [62]
        (I49) $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow$ CO2+ O2+ O 3.0 × 10–13 [18]
        (I50) $ {\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ $ \Rightarrow$ CO2+ 2O2 3.0 × 10–13 [18]
        (I51) $ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ +M$ \Rightarrow$ CO++ CO +M 1.0 × 10–18 [18]
        (I52) $ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{3}^{-} $$ \Rightarrow$ CO2+ 2CO + O 5.0 × 10–13 [18]
        (I53) $ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ $ \Rightarrow$ CO2+ 2CO + O2 5.0 × 10–13 [18]
        (I54) $ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ + $ {\mathrm{O}}_{2}^{-} $$ \Rightarrow$ 2CO + O2 6.0 × 10–13 [18]
        (I55) $ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ $ \Rightarrow$ 2CO2+ CO + O 5.0 × 10–13 [18]
        (I56) $ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ $ \Rightarrow$ 2CO2+ CO + O2 5.0 × 10–13 [18]
        (I57) $ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $ + $ {\mathrm{O}}_{2}^{-} $ $ \Rightarrow$ CO2+ CO + O2 6.0 × 10–13 [18]
        (I58) $ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ +M$ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + CO2+M 1.0 × 10–20 [18]
        (I59) $ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{3}^{-} $$ \Rightarrow$ 3CO2+ O 5.0 × 10–13 [18]
        (I60) $ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ $ \Rightarrow$ 3CO2+ O2 5.0 × 10–13 [18]
        (I61) $ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ + $ {\mathrm{O}}_{2}^{-} $ $ \Rightarrow$ 2CO2+ O2 6.0 × 10–13 [18]
        (I62) O+ O3$ \Rightarrow$ 2O2+ e 3.0 × 10–16 [44]
        (I63) O+ O3$ \Rightarrow$ $ {\mathrm{O}}_{3}^{-} $ + O 8.0 × 10–16 [18]
        (I64) $ {\mathrm{O}}_{2}^{-} $ + O3$ \Rightarrow$ $ {\mathrm{O}}_{3}^{-} $ + O2 4.0 × 10–16 [18]
        (I65) $ {\mathrm{O}}_{3}^{-} $ + O3$ \Rightarrow$ 3O2+ e 3.0 × 10–16 [18]
        (I66) O++ O3$ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + O2 1.0 × 10–16 [18]
        (I67) O+ O2$ \Rightarrow$ O3+ e 1.0 × 10–18 [44]
        (I68) O+ O2$ \Rightarrow$ $ {\mathrm{O}}_{2}^{-} $ + O 1.5 × 10–18 [55]
        (I69) O+ O2$ \Rightarrow$ O + e + O2 6.9 × 10–16 [52]
        (I70) O+ O2+ O2$ \Rightarrow$ $ {\mathrm{O}}_{3}^{-} $ + O2 1.1 × 10–42(Tg/300) [52]
        (I71) $ {\mathrm{O}}_{2}^{-} $ + O2$ \Rightarrow$ 2O2+ e 2.7 × 10–16(Tg/300)0.5exp(–5590/Tg) [52]
        (I72) $ {\mathrm{O}}_{2}^{-} $ + O2+M$ \Rightarrow$ $ {\mathrm{O}}_{4}^{-} $ +M 3.5 × 10–43 [18]
        (I73) $ {\mathrm{O}}_{3}^{-} $ + O2$ \Rightarrow$ O2+ O3+ e 2.3 × 10–17 [18]
        (I74) O++ O2$ \Rightarrow$ O + $ {\mathrm{O}}_{2}^{+} $ 1.9 × 10–17(Tg/298)–0.5 [18]
        (I75) $ {\mathrm{O}}_{2}^{+} $ + O2+ O2$ \Rightarrow$ $ {\mathrm{O}}_{4}^{+} $ + O2 4.0 × 10–42(Tg/300)–2.93 [52]
        (I76) $ {\mathrm{O}}_{4}^{+} $ + O2$ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + O2+ O2 1.8 × 10–19 [52]
        (I77) O++ O + O2$ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + O2 1.0 × 10–41 [52]
        (I78) O+ O $ \Rightarrow$ O2+ e 2.3 × 10–16 [21]
        (I79) $ {\mathrm{O}}_{2}^{-} $ + O $ \Rightarrow$ O2+ O 3.31 × 10–16 [21]
        (I80) $ {\mathrm{O}}_{2}^{-} $ + O $ \Rightarrow$ O3+ e 3.3 × 10–16 [18]
        (I81) $ {\mathrm{O}}_{3}^{-} $ + O $ \Rightarrow$ O3+ O 1.0 × 10–19 [18]
        (I82) $ {\mathrm{O}}_{3}^{-} $ + O $ \Rightarrow$ 2O2+ e 1.0 × 10–19 [18]
        (I83) $ {\mathrm{O}}_{3}^{-} $ + O $ \Rightarrow$ $ {\mathrm{O}}_{2}^{-} $ + O2 2.5 × 10–16 [18]
        (I84) $ {\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow$ $ {\mathrm{O}}_{3}^{-} $ + O2 4.0 × 10–16 [18]
        (I85) $ {\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow$ O+ 2O2 3.0 × 10–16 [18]
        (I86) $ {\mathrm{O}}_{4}^{+} $ + O $ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + O3 3.0 × 10–16 [18]
        (I87) O+ $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow$ O2+ O 2.6 × 10–14(300/Tg)0.44 [21]
        (I88) O+ $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow$ 3O 4.2 × 10–13(300/Tg)0.44 [21]
        (I89) O+ $ {\mathrm{O}}_{2}^{+} $ + O2$ \Rightarrow$ O3+ O2 2.0 × 10–37 [57]
        (I90) O+ O++ O $ \Rightarrow$ O2+ O 2.0 × 10–37 [57]
        (I91) O+ O++ O2$ \Rightarrow$ 2O2 2.0 × 10–37 [57]
        (I92) O+ O+$ \Rightarrow$ 2O 4.0 × 10–14 [18]
        (I93) $ {\mathrm{O}}_{2}^{-} $ + O+$ \Rightarrow$ O + O2 2.7 × 10–13 [18]
        (I94) $ {\mathrm{O}}_{2}^{-} $ + O++ O2$ \Rightarrow$ O3+ O2 2.0 × 10–37 [57]
        (I95) $ {\mathrm{O}}_{2}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow$ 2O2 2.01 × 10–13(300/Tg)0.5 [21]
        (I96) $ {\mathrm{O}}_{2}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow$ O2+ 2O 4.2 × 10–13 [21]
        (I97) $ {\mathrm{O}}_{2}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ + O2$ \Rightarrow$ 3O2 2.0 × 10–37 [57]
        (I98) $ {\mathrm{O}}_{3}^{-} $ + O +M$ \Rightarrow$ O3+ O +M 2.0 × 10–37(Tg/300)–2.5 [57]
        (I99) $ {\mathrm{O}}_{3}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ +M$ \Rightarrow$ O3+ O2+M 2.0 × 10–37(Tg/300)–2.5 [57]
        (I100) $ {\mathrm{O}}_{3}^{-} $ + O+$ \Rightarrow$ O3+ O 1.0 × 10–13 [18]
        (I101) $ {\mathrm{O}}_{3}^{-} $+ $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow$ O2+ O3 2.0 × 10–13 [18]
        (I102) $ {\mathrm{O}}_{3}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow$ 2O + O3 1.0 × 10–13 [18]
        (I103) $ {\mathrm{O}}_{4}^{-} $ +M$ \Rightarrow$ $ {\mathrm{O}}_{2}^{-} $ + O2+M 4.0 × 10–18 [18]
        DownLoad: CSV

        简化集合粒子构成
        中性粒子 CO2, CO, C, O, O2, O3
        正离子 $ {\mathrm{C}\mathrm{O}}_{2}^{+} $, CO+, C+, O+, $ {\mathrm{O}}_{2}^{+} $
        负离子 $ {\mathrm{C}\mathrm{O}}_{4}^{-} $, $ {\mathrm{C}\mathrm{O}}_{3}^{-} $, O, $ {\mathrm{O}}_{2}^{-} $, $ {\mathrm{O}}_{3}^{-} $
        DownLoad: CSV

        序号 反应 反应速率系数 文献
        (E01) e + e + C+$\Rightarrow $ C + e 5.0 × 10–39 [55]
        (E02) e + CO+$\Rightarrow $ C + O 3.46 × 10–14Te–0.48 [56]
        (E03) e + $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ $\Rightarrow $ C + O2 3.94 × 10–13Te–0.4 [21]
        (E04) e + $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ $\Rightarrow $ CO + O 2.0 × 10–11Te–0.5Tg–1 [18]
        (E05) e + $ {\mathrm{C}\mathrm{O}}_{4}^{+} $ $\Rightarrow $ CO2+ O2 1.61 × 10–13Te–0.5 [18]
        (E06) e + $ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ $\Rightarrow $ 2CO 4.0 × 10–13Te–0.34 [18]
        (E07) e + $ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $ $\Rightarrow $ CO2+ CO 5.4 × 10–14Te–0.7 [18]
        (E08) e + $ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ $\Rightarrow $ 2CO2 2.0 × 10–11Te–0.5Tg–1 [18]
        (E09) e + O2+ O2$\Rightarrow $ $ {\mathrm{O}}_{2}^{-} $ + O2 2.2 × 10–41(300/Tg)1.5exp(-600/Tg) [52]
        (E10) e + O + O2$\Rightarrow $ O+ O2 1.0 × 10–43exp(300/Tg) [52]
        (E11) e + O3+ O2$\Rightarrow $ $ {\mathrm{O}}_{3}^{-} $ + O2 4.6 × 10–40 [52]
        (E12) e + O++M$\Rightarrow $ O +M 6.0 × 10–39(Te× 38.67)–1.5 [57]
        (E13) e + $ {\mathrm{O}}_{2}^{+} $ $\Rightarrow $ 2O 6.0 × 10–13Te–0.5(1/Tg)0.5 [21]
        (E14) e + $ {\mathrm{O}}_{2}^{+} $ +M$\Rightarrow $ O2+M 6.0 × 10–39(Te× 38.67)–1.5 [57]
        (E15) e + $ {\mathrm{O}}_{2}^{+} $ + e $\Rightarrow $ O2+ e 1.0 × 10–31(Te× 38.67)–4.5 [57]
        (E16) e + O++ e $\Rightarrow $ O + e 7.2 × 10–32(Te× 38.67)–4.5 [57]
        (E17) e + $ {\mathrm{O}}_{4}^{+} $ $\Rightarrow $ 2O2 2.25 × 10–13Te–0.5 [18]
        (E18) e + $ {\mathrm{O}}_{5}^{+} $ $\Rightarrow $ O2+ O3 5.0 × 10–12(Te× 38.67)–0.6 [52]
        DownLoad: CSV

        序号 反应 反应速率系数 文献
        (N01) CO2+ O $ \Rightarrow$ CO + O2 2.8 × 10–17exp(–26500/Tg) [21]
        (N02) CO + O2$ \Rightarrow$ CO2+ O 4.2 × 10–18exp(–24000/Tg) [21]
        (N03) CO2+ C $ \Rightarrow$ 2CO 1.0 × 10–21 [21]
        (N04) C + O2$ \Rightarrow$ O + CO 3.0 × 10–17 [21]
        (N05) C + O +M$ \Rightarrow$M+ CO 2.14 × 10–41(Tg/300)–3.08exp(–2114/Tg) [21]
        (N06) CO +M$ \Rightarrow$ O + C +M 1.52 × 10–10(Tg/298)–3.1exp(–129000/Tg) [58]
        (N07) CO + O3$ \Rightarrow$ CO2+ O2 4.0 × 10–31 [52]
        (N08) CO2+ CO2$ \Rightarrow$ CO + O + CO2 3.91 × 10–16exp(–49430/Tg) [59]
        (N09) C + CO + CO2$ \Rightarrow$ C2O + CO2 6.3 × 10–44 [59]
        (N10) C2O + O $ \Rightarrow$ 2CO 5.0 × 10–17 [18]
        (N11) C2O + O2$ \Rightarrow$ CO2+ CO 3.3 × 10–19 [18]
        (N12) O + O2+ CO2$ \Rightarrow$ O3+ CO2 1.7 × 10–42Tg–1.2 [48]
        (N13) O + O + CO2$ \Rightarrow$ O2 + CO2 3.81 × 10–42Tg–1exp(–170/Tg) [48]
        (N14) O + CO + CO2$ \Rightarrow$ 2CO2 1.6 × 10–45exp(–1510/Tg) [48]
        (N15) O + CO + CO $ \Rightarrow$ CO2+ CO 6.54 × 10–45 [60]
        (N16) O + O2+ CO $ \Rightarrow$ CO2+ O2 6.51 × 10–48 [60]
        (N17) O + O + CO $ \Rightarrow$ O2+ CO 2.76 × 10–46 [60]
        (N18) O + O + O $ \Rightarrow$ O2+ O 6.2 × 10–44exp(–750/Tg) [52]
        (N19) O + O + O2$ \Rightarrow$ 2O2 1.3 × 10–44(Tg/300)–1exp(–170/Tg) [52]
        (N20) O + O3$ \Rightarrow$ 2O2 3.1 × 10–20Tg0.75exp(–1575/Tg) [18]
        (N21) O2+ O3$ \Rightarrow$ 2O2+ O 7.26 × 10–16exp(–11400/Tg) [48]
        (N22) O2+ O + O2$ \Rightarrow$ O3+ O2 8.61 × 10–43Tg–1.25 [48]
        (N23) O2+ O2$ \Rightarrow$ O + O3 2.1 × 10–17exp(–498000/Tg) [57]
        (N24) O2+M$ \Rightarrow$ O + O +M 3.0 × 10–12Tg–1exp(–59380/Tg) [57]
        DownLoad: CSV

        序号 反应 文献 序号 反应 文献
        (Y01) e + CO2$\Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + 2e [50] (Y11) e + O3$\Rightarrow $ $ {\mathrm{O}}_{2}^{-} $ + O [50]
        (Y02) e + CO2$\Rightarrow $ CO + O + e [50] (Y12) e + O3$\Rightarrow $ O2+ O [50]
        (Y03) e + CO2$\Rightarrow $ CO + O [50] (Y13) e + O3$\Rightarrow $ O + O2+ e [53]
        (Y04) e + CO2$\Rightarrow $ 2e + O + CO+ [50] (Y14) e + O3$\Rightarrow $ $ {\mathrm{O}}_{2}^{+} $ + O + 2e [53]
        (Y05) e + CO2$\Rightarrow $ 2e + CO + O+ [50] (Y15) e + O2$\Rightarrow $ 2 O + e [50]
        (Y06) e + CO2$\Rightarrow $ $ {\mathrm{O}}_{2}^{+} $ + C + 2e [51,52] (Y16) e + O2$\Rightarrow $ O + O [50]
        (Y07) e + CO $\Rightarrow $ C + O [50] (Y17) e + O2$\Rightarrow $ 2e + $ {\mathrm{O}}_{2}^{+} $ [50]
        (Y08) e + CO $\Rightarrow $ e + C + O [50] (Y18) e + O $\Rightarrow $ 2e + O+ [50]
        (Y09) e + CO $\Rightarrow $ 2e + CO+ [50] (Y19) e + C $\Rightarrow $ 2e + C+ [50]
        (Y10) e + CO $\Rightarrow $ 2e + C++ O [50]
        DownLoad: CSV

        序号 反应 反应速率系数 文献
        (F01) e + $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ $\Rightarrow $ C + O2 3.94 × 10–13Te–0.4 [21]
        (F02) e + $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ $\Rightarrow $ CO + O 2.0 × 10–11Te–0.5Tg–1 [18]
        (F03) e + O3+ O2$\Rightarrow $ $ {\mathrm{O}}_{3}^{-} $ + O2 4.6 × 10–40 [52]
        (F04) e + $ {\mathrm{O}}_{2}^{+} $ $\Rightarrow $ 2O 6.0 × 10–13Te–0.5(1/Tg)0.5 [21]
        DownLoad: CSV

        序号 反应 反应速率系数 文献
        (M01) CO2+ C $ \Rightarrow$ 2 CO 1.0 × 10–21 [21]
        (M02) C + O2$\Rightarrow $ O + CO 3.0 × 10–17 [21]
        (M03) O + O2+ CO2$\Rightarrow $ O3+ CO2 1.7 × 10–42Tg–1.2 [48]
        (M04) O + O + CO2$\Rightarrow $ O2 + CO2 3.81 × 10–42Tg–1exp(–170/Tg) [48]
        DownLoad: CSV

        序号 反应 反应速率系数 文献
        (H01) O+ CO2$ \Rightarrow $ O + CO2+ e 4.0 × 10–18 [48]
        (H02) O+ CO2+ CO $ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + CO 1.5 × 10–40 [61]
        (H03) O+ CO2+ O2$ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O2 3.1 × 10–40 [61]
        (H04) O+ CO2+ CO2$ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + CO2 9.0 × 10–41 [52]
        (H05) $ {\mathrm{O}}_{2}^{-} $ + CO2+ O2$ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O2 4.7 × 10–41 [52]
        (H06) $ {\mathrm{O}}_{3}^{-} $ + CO2$ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O2 5.5 × 10–16 [18]
        (H07) O++ CO2$ \Rightarrow $ $ {\mathrm{O}}_{2}^{+} $ + CO 9.4 × 10–16 [18]
        (H08) O++ CO2$ \Rightarrow $ O + $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ 4.5 × 10–16 [18]
        (H09) C++ CO2$ \Rightarrow $ CO++ CO 1.1 × 10–15 [18]
        (H10) CO++ CO2$ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + CO 1.0 × 10–15 [56]
        (H11) O+ CO $ \Rightarrow $ CO2+ e 5.5 × 10–16 [44]
        (H12) $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + CO $ \Rightarrow $ 2CO2+ e 5.0 × 10–19 [58]
        (H13) $ {\mathrm{O}}_{2}^{+} $ + C $ \Rightarrow $ CO++ O 5.2 × 10–17 [18]
        (H14) $ {\mathrm{O}}_{2}^{+} $ + C $ \Rightarrow $ C++ O2 5.2 × 10–17 [18]
        (H15) O+ C $ \Rightarrow $ CO + e 5.0 × 10–16 [57]
        (H16) $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O $ \Rightarrow $ $ {\mathrm{O}}_{2}^{+} $ + CO 1.638 × 10–16 [52]
        (H17) $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O $ \Rightarrow $ CO2+ O+ 9.62 × 10–17 [18]
        (H18) $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O2 1.1 × 10–16 [18]
        (H19) $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow $ CO2+ O2+ O 1.4 × 10–17 [18]
        (H20) $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow $ CO2+ $ {\mathrm{O}}_{3}^{-} $ 1.4 × 10–16 [18]
        (H21) $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O $ \Rightarrow $ CO2+ $ {\mathrm{O}}_{2}^{-} $ 8.0 × 10–17 [58]
        (H22) $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O2$ \Rightarrow $ $ {\mathrm{O}}_{2}^{+} $ + CO2 6.4 × 10–17 [52]
        (H23) $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O$ \Rightarrow $ O + CO2 1.0 × 10–13 [62]
        (H24) $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + $ {\mathrm{O}}_{2}^{-} $ $ \Rightarrow $ CO + O2+ O 6.0 × 10–13 [44]
        (H25) $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ $ \Rightarrow $ 2CO2+ O 5.0 × 10–13 [58]
        (H26) $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ $ \Rightarrow $ 2CO2+ O2 5.0 × 10–13 [18]
        (H27) $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow $ CO2+ O2+ O 3.0 × 10–13 [18]
        (H28) $ {\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ $ \Rightarrow $ CO2+ 2O2 3.0 × 10–13 [18]
        (H29) O+ O3$ \Rightarrow $ 2O2+ e 3.0 × 10–16 [44]
        (H30) O+ O3$ \Rightarrow $ $ {\mathrm{O}}_{3}^{-} $ + O 8.0 × 10–16 [18]
        (H31) $ {\mathrm{O}}_{2}^{-} $ + O3$ \Rightarrow $ $ {\mathrm{O}}_{3}^{-} $ + O2 4.0 × 10–16 [18]
        (H32) O+ O2$ \Rightarrow $ O + e + O2 6.9 × 10–16 [52]
        (H33) O+ O $ \Rightarrow $ O2+ e 2.3 × 10–16 [21]
        (H34) $ {\mathrm{O}}_{2}^{-} $ + O $ \Rightarrow $ O2+ O 3.31 × 10–16 [21]
        (H35) $ {\mathrm{O}}_{2}^{-} $ + O $ \Rightarrow $ O3+ e 3.3 × 10–16 [18]
        (H36) $ {\mathrm{O}}_{3}^{-} $ + O $ \Rightarrow $ $ {\mathrm{O}}_{2}^{-} $ + O2 2.5 × 10–16 [18]
        (H37) O+ $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow $ O2+ O 2.6 × 10–14(300/Tg)0.44 [21]
        (H38) O+ $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow $ 3O 4.2 × 10–13(300/Tg)0.44 [21]
        (H39) $ {\mathrm{O}}_{2}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow $ 2O2 2.01 × 10–13(300/Tg)0.5 [21]
        (H40) $ {\mathrm{O}}_{2}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow $ O2+ 2O 4.2 × 10–13 [21]
        DownLoad: CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

        [54]

        [55]

        [56]

        [57]

        [58]

        [59]

        [60]

        [61]

        [62]

        [63]

      • [1] Wang Song, Zhou Chuang, Li Su-Wen, Mou Fu-Sheng.Method of measuring atmospheric CO2based on Fabry-Perot interferometer. Acta Physica Sinica, 2024, 73(2): 020702.doi:10.7498/aps.73.20231224
        [2] Fu Qiang, Wang Cong, Wang Yu-Fei, Chang Zheng-Shi.Comparative study on discharge characteristics of low pressure CO2driven by sinusoidal AC voltage: DBD and bare electrode structure. Acta Physica Sinica, 2022, 71(11): 115204.doi:10.7498/aps.71.20220086
        [3] Sun Guan-Wen, Cui Han-Yin, Li Chao, Lin Wei-Jun.Methods of modelling dispersive sound speed profiles of Martian atmosphere and their effects on sound propagation paths. Acta Physica Sinica, 2022, 71(24): 244304.doi:10.7498/aps.71.20221531
        [4] Sun Chun-Yan, Wang Gui-Shi, Zhu Gong-Dong, Tan Tu, Liu Kun, Gao Xiao-Ming.Atmospheric CO2column concentration retrieval based on high resolution laser heterodyne spectra and evaluation method of system measuring error. Acta Physica Sinica, 2020, 69(14): 144201.doi:10.7498/aps.69.20200125
        [5] Wang Zhen, Du Yan-Jun, Ding Yan-Jun, Peng Zhi-Min.Monitoring of ambient methane and carbon dioxide concentrations based on wavelength modulation-direct absorption spectroscopy. Acta Physica Sinica, 2020, 69(6): 064205.doi:10.7498/aps.69.20191569
        [6] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie.Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202.doi:10.7498/aps.67.20172192
        [7] Wang Qian, Bi Yan-Meng, Yang Zhong-Dong.Simulation analysis of aerosol effect on shortwave infrared remote sensing detection of atmospheric CO2. Acta Physica Sinica, 2018, 67(3): 039202.doi:10.7498/aps.67.20171993
        [8] Shan Chang-Gong, Wang Wei, Liu Cheng, Xu Xing-Wei, Sun You-Wen, Tian Yuan, Liu Wen-Qing.Detection of stable isotopic ratio of atmospheric CO2 based on Fourier transform infrared spectroscopy. Acta Physica Sinica, 2017, 66(22): 220204.doi:10.7498/aps.66.220204
        [9] Wang Kai, Zhang Wen-Hua, Liu Ling-Yun, Xu Fa-Qiang.Healing of oxygen defects on VO2 surface: F4TCNQ adsorption. Acta Physica Sinica, 2016, 65(8): 088101.doi:10.7498/aps.65.088101
        [10] Li Zhi-Bin, Ma Hong-Liang, Cao Zhen-Song, Sun Ming-Guo, Huang Yin-Bo, Zhu Wen-Yue, Liu Qiang.High-sensitive off-axis integrated cavity output spectroscopy and its measurement of ambient CO2 at 2 μm. Acta Physica Sinica, 2016, 65(5): 053301.doi:10.7498/aps.65.053301
        [11] Chen Jie, Zhang Chun-Min, Wang Ding-Yi, Zhang Xing-Ying, Wang Shu-Peng, Li Yan-Fen, Liu Dong-Dong, Rong Piao.Effects of the surface albedo on short-wave infrared detection of atmospheric CO2. Acta Physica Sinica, 2015, 64(23): 239201.doi:10.7498/aps.64.239201
        [12] Liu Hao, Shu Rong, Hong Guang-Lie, Zheng Long, Ge Ye, Hu Yi-Hua.Continuous-wave modulation differential absorption lidar system for CO2 measurement. Acta Physica Sinica, 2014, 63(10): 104214.doi:10.7498/aps.63.104214
        [13] Han Yue-Qi, Zhong Zhong, Wang Yun-Feng, Du Hua-Dong.Gradient calculation based ensemble variational method and its application to the inversion of the turbulent coefficient in atmospheric Ekman layer. Acta Physica Sinica, 2013, 62(4): 049201.doi:10.7498/aps.62.049201
        [14] Sun You-Wen, Xie Pin-Hua, Xu Jin, Zhou Hai-Jin, Liu Cheng, Wang Yang, Liu Wen-Qing, Si Fu-Qi, Zeng Yi.Measurement of atmospheric CO2 vertical column density using weighting function modified differential optical absorption spectroscopy. Acta Physica Sinica, 2013, 62(13): 130703.doi:10.7498/aps.62.130703
        [15] Zhang Kun, Liu Fang-Yang, Lai Yan-Qing, Li Yi, Yan Chang, Zhang Zhi-An, Li Jie, Liu Ye-Xiang.In situ growth and characterization of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering for solar cells. Acta Physica Sinica, 2011, 60(2): 028802.doi:10.7498/aps.60.028802
        [16] Hong Guang-Lie, Zhang Yin-Chao, Zhao Yue-Feng, Shao Shi-Sheng, Tan Kun, Hu Huan-Ling.Raman lidar for profiling atmospheric CO2. Acta Physica Sinica, 2006, 55(2): 983-987.doi:10.7498/aps.55.983
        [17] XU ZHEN-JIA, CHEN WEI-DE.IN-DEPTH OXYGEN CONTAMINATION PRODUCED IN CW CO2 LASER ANNEALED Si. Acta Physica Sinica, 1984, 33(1): 9-15.doi:10.7498/aps.33.9
        [18] FU EN-SHENG, WANG YU-MIN, CHENG ZHAO-GU, DOU AI-RONG.ELECTRO-OPTIC FREQUENCY SHIFT OF 10.6μm CO2LASER LINE. Acta Physica Sinica, 1979, 28(5): 24-31.doi:10.7498/aps.28.24
        [19] GAO ZHI, LIN LIE, SUN WEN-CHAO.A THEORETICAL MODEL FOR TRANSVERSE-DISCHARGE FLOW TYPE CO2LASERS. Acta Physica Sinica, 1979, 28(6): 807-823.doi:10.7498/aps.28.807
        [20] LIN GUANG-HAI.THE SATURATION CHARACTERISTICS OF ELECTRIC DISCHARGE CONVECTION CO2LASER. Acta Physica Sinica, 1978, 27(4): 396-412.doi:10.7498/aps.27.396
      Metrics
      • Abstract views:4007
      • PDF Downloads:78
      • Cited By:0
      Publishing process
      • Received Date:09 April 2021
      • Accepted Date:04 June 2021
      • Available Online:15 August 2021
      • Published Online:05 November 2021

        返回文章
        返回
          Baidu
          map