The Bose-Einstein condensate (BEC) formed by ultracold atomic gases provides an ideal platform for studying various quantum phenomena. In this platform, researchers have explored in depth the important equilibrium and steady phenomena including superfluidity, vortices, and solitons, and recently started to study nonequilibrium problems. In a classical system, nonequilibrium problems, such as explosion, usually occur together with shock waves, which is presented when the explosion speed is larger than the local sound speed. For BEC systems which possess quantum properties, how to produce and understand the shock waves becomes a hot research topic. In this work, we systematically discuss the possibility of quantum shock wave and its essential mechanism in a one-dimensional BEC initially containing dark solitons through quenching interactions. When the system is quenched to the limit of non-interaction, we analytically obtain the post-quench dynamics of initially immobile dark solitons, and find the existence of shock wave, which can be explained through the quantum interference effect. When the system is quenched to finite interaction, we find similar phenomena through numerically solving the Gross-Pitaevskii equation, and analyze different situations. When the system is quenched to a finite weaker interaction, the situation is similar to a non-interaction case; when the system is quenched to a stronger interaction, the shock wave is accompanied by the splitting of the initial soliton, and the two objects can synchronously change; specifically when the quenched ratio of strength is an integer squared, the shock wave disappears, and the soliton is split perfectly. We further explore the properties of the shock wave including its amplitude and speed, and obtain the full scenario as the quenched interaction varies. This work provides theoretical guidance for realizing and measuring shock wave in experiment.