[1] |
Zhang Xu, Ding Jin-Min, Hou Chen-Yang, Zhao Yi-Ming, Liu Hong-Wei, Liang Sheng.Machine learning based laser homogenization method. Acta Physica Sinica, 2024, 73(16): 164205.doi:10.7498/aps.73.20240747 |
[2] |
Liu Hong-Jiang, Liu Yi-Fei, Gu Fu-Xing.Automatic fabrication system of optical micro-nanofiber based on deep learning. Acta Physica Sinica, 2024, 73(10): 104207.doi:10.7498/aps.73.20240171 |
[3] |
Zhang Jia-Hui.Machine learning forin silicoprotein research. Acta Physica Sinica, 2024, 73(6): 069301.doi:10.7498/aps.73.20231618 |
[4] |
Huang Yu-Hang, Chen Li-Xiang.Fractional Fourier transform imaging based on untrained neural networks. Acta Physica Sinica, 2024, 73(9): 094201.doi:10.7498/aps.73.20240050 |
[5] |
Ouyang Xin-Jian, Zhang Yan-Xing, Wang Zhi-Long, Zhang Feng, Chen Wei-Jia, Zhuang Yuan, Jie Xiao, Liu Lai-Jun, Wang Da-Wei.Modeling ferroelectric phase transitions with graph convolutional neural networks. Acta Physica Sinica, 2024, 73(8): 086301.doi:10.7498/aps.73.20240156 |
[6] |
Guo Wei-Chen, Ai Bao-Quan, He Liang.Reveal flocking phase transition of self-propelled active particles by machine learning regression uncertainty. Acta Physica Sinica, 2023, 72(20): 200701.doi:10.7498/aps.72.20230896 |
[7] |
Ou Xiu-Juan, Xiao Yi.Deep learning methods of predicting RNA torsion angle. Acta Physica Sinica, 2023, 72(24): 248703.doi:10.7498/aps.72.20231069 |
[8] |
Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang.Application of machine learning in cosmic ray particle identification. Acta Physica Sinica, 2023, 72(14): 140202.doi:10.7498/aps.72.20230334 |
[9] |
Guan Xing-Yue, Huang Heng-Yan, Peng Hua-Qi, Liu Yan-Hang, Li Wen-Fei, Wang Wei.Machine learning in molecular simulations of biomolecules. Acta Physica Sinica, 2023, 72(24): 248708.doi:10.7498/aps.72.20231624 |
[10] |
Sun Tao, Yuan Jian-Mei.Prediction of band gap of transition metal sulfide with Janus structure by deep learning atomic feature representation method. Acta Physica Sinica, 2023, 72(2): 028901.doi:10.7498/aps.72.20221374 |
[11] |
Zhang Jia-Wei, Yao Hong-Bo, Zhang Yuan-Zheng, Jiang Wei-Bo, Wu Yong-Hui, Zhang Ya-Ju, Ao Tian-Yong, Zheng Hai-Wu.Self-powered sensing based on triboelectric nanogenerator through machine learning and its application. Acta Physica Sinica, 2022, 71(7): 078702.doi:10.7498/aps.71.20211632 |
[12] |
Zhan Qing-Liang, Ge Yao-Jun, Bai Chun-Jin.Flow feature extraction models based on deep learning. Acta Physica Sinica, 2022, 71(7): 074701.doi:10.7498/aps.71.20211373 |
[13] |
Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng.Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, 2021, 70(14): 140306.doi:10.7498/aps.70.20210831 |
[14] |
Chen Jiang-Zhi, Yang Chen-Wen, Ren Jie.Machine learning based on wave and diffusion physical systems. Acta Physica Sinica, 2021, 70(14): 144204.doi:10.7498/aps.70.20210879 |
[15] |
Xu Zhao, Zhou Xin, Bai Xing, Li Cong, Chen Jie, Ni Yang.Attacking asymmetric cryptosystem based on phase truncated Fourier fransform by deep learning. Acta Physica Sinica, 2021, 70(14): 144202.doi:10.7498/aps.70.20202075 |
[16] |
Wang Wei, Jie Quan-Lin.Identifying phase transition point ofJ1-J2antiferromagnetic Heisenberg spin chain by machine learning. Acta Physica Sinica, 2021, 70(23): 230701.doi:10.7498/aps.70.20210711 |
[17] |
Chen Wei, Guo Yuan, Jing Shi-Wei.General image encryption algorithm based on deep learning compressed sensing and compound chaotic system. Acta Physica Sinica, 2020, 69(24): 240502.doi:10.7498/aps.69.20201019 |
[18] |
Lang Li-Ying, Lu Jia-Lei, Yu Na-Na, Xi Si-Xing, Wang Xue-Guang, Zhang Lei, Jiao Xiao-Xue.In depth learning based method of denoising joint transform correlator optical image encryption system. Acta Physica Sinica, 2020, 69(24): 244204.doi:10.7498/aps.69.20200805 |
[19] |
Yang Zi-Xin, Gao Zhang-Ran, Sun Xiao-Fan, Cai Hong-Ling, Zhang Feng-Ming, Wu Xiao-Shan.High critical transition temperature of lead-based perovskite ferroelectric crystals: A machine learning study. Acta Physica Sinica, 2019, 68(21): 210502.doi:10.7498/aps.68.20190942 |
[20] |
CHEN SHU, CHANG SHENG-JIANG, YUAN JING-HE, ZHANG YAN-XIN, K.W.WONG.ADAPTIVE TRAINING AND PRUNING FOR NEURAL NETWORKS:ALGORITHMS AND APPLICATION. Acta Physica Sinica, 2001, 50(4): 674-681.doi:10.7498/aps.50.674 |