\begin{document}${}_{n'} $\end{document} (\begin{document}$n' $\end{document}= 2, 3, 4, ···, 15) in a saturated rubidium vapor sample at about 328 K, by using optical magnetic resonance spectroscopy. The experimental results show that there is a relationship f\begin{document}${}_{n'} $\end{document} = f */\begin{document}$n' $\end{document} between the resonant frequencies f\begin{document}${}_{n'} $\end{document} of 14 kinds of cluster particles (87Rb)\begin{document}${}_{n'} $\end{document} and the resonant frequencies f * of 87Rb1. The magnetic moment and their resonance amplitudes show two different relationships with the \begin{document}${n'} $\end{document} odevity. When the particles have an odd number of 5s electrons, they must have spontaneous magnetic moment, and the value of magnetic moment increases with n and decreases inverse proportionally with the combined angular momentum F of the cluster particles. The amplitude obtained from resonance spectrum complies with the variation law of magnetic moment value. On the other hand, for the cluster particles with n being even number, the magnetic moment value becomes 0 and the amplitude is also 0 in the most cases, except for the cluster particles 87Rb2 with n = 2 i.e. two 5s electrons, which is caused by the Jahn-Teller effect of the linear molecules, and the magnetic moment value is consistent with the calculation results of the odd number particles. When n > 2, the coupling effect between the magnetic moments of the Rb cluster shows a long-range ordered antiferromagnetic property with the increase of the number of 5s valence electrons n. The electron configuration and molecular state of the ground state and the lowest excited state of 14 kinds of 2—15 atoms cluster particles 87Rbn, as well as the stability of each molecular state and the possibility of visible Zeeman effect are obtained by using the molecular orbital-state theory analysis and constructing the 87Rbn–1 + 87Rbn atomic cluster model. Furthermore, based on the magnetic moment of diatomic molecules ruler, it is found that when n = \begin{document}${n'} $\end{document}, the magnetic moment of (87Rb)\begin{document}${}_{n'} $\end{document} and 87Rbn are in strict consistency (the average relative error is only 0.6765%), confirming the corresponding relationship between (87Rb)\begin{document}${}_{n'} $\end{document} and 87Rbn. This research will be of great value in the magnetic research of cluster particles."> - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Di Shu-Hong, Zhang Yang, Yang Hui-Jing, San Xing-Yuan, Liu Hui-Yuan, Zhang Su-Heng, Li Fan-Lin, Tai Jun-Jun, Zhou Chun-Li
    PDF
    HTML
    Get Citation
    • For the magnetism of alkali metal clusters, it is difficult to determine the number of atoms and the magnetic moment of isolated atoms cluster. In this paper, we investigate the magnetic moment of single atomic molecule 87Rb 1and 14 kinds of cluster particles ( 87Rb) ${}_{n'} $ ( $n' $ = 2, 3, 4, ···, 15) in a saturated rubidium vapor sample at about 328 K, by using optical magnetic resonance spectroscopy. The experimental results show that there is a relationship f ${}_{n'} $ = f*/ $n' $ between the resonant frequencies f ${}_{n'} $ of 14 kinds of cluster particles ( 87Rb) ${}_{n'} $ and the resonant frequencies f* of 87Rb 1. The magnetic moment and their resonance amplitudes show two different relationships with the ${n'} $ odevity. When the particles have an odd number of 5s electrons, they must have spontaneous magnetic moment, and the value of magnetic moment increases with nand decreases inverse proportionally with the combined angular momentum Fof the cluster particles. The amplitude obtained from resonance spectrum complies with the variation law of magnetic moment value. On the other hand, for the cluster particles with nbeing even number, the magnetic moment value becomes 0 and the amplitude is also 0 in the most cases, except for the cluster particles 87Rb 2with n= 2 i.e. two 5s electrons, which is caused by the Jahn-Teller effect of the linear molecules, and the magnetic moment value is consistent with the calculation results of the odd number particles. When n> 2, the coupling effect between the magnetic moments of the Rb cluster shows a long-range ordered antiferromagnetic property with the increase of the number of 5s valence electrons n. The electron configuration and molecular state of the ground state and the lowest excited state of 14 kinds of 2—15 atoms cluster particles 87Rb n, as well as the stability of each molecular state and the possibility of visible Zeeman effect are obtained by using the molecular orbital-state theory analysis and constructing the 87Rb n–1+ 87Rb natomic cluster model. Furthermore, based on the magnetic moment of diatomic molecules ruler, it is found that when n= ${n'} $ , the magnetic moment of ( 87Rb) ${}_{n'} $ and 87Rb nare in strict consistency (the average relative error is only 0.6765%), confirming the corresponding relationship between ( 87Rb) ${}_{n'} $ and 87Rb n. This research will be of great value in the magnetic research of cluster particles.
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

      • ${n'} $为奇数粒子 ${n'} $ ${\bar g_{n'}}$ $\bar \mu {}_{n'}$/μB ${\bar A_{n'}}$/mV ${n'} $为偶数粒子 ${n'} $ ${\bar g_{n'}}$ $\bar \mu {}_{n'}$/μB ${\bar A_{n'}}$/mV
        87Rb1 1 0.494337 0.494337 1574.50 (87Rb)2′ 2 0.246984 0.246984 105.75
        (87Rb)3′ 3 0.164598 0.164598 883.07 (87Rb)4′ 4 0 0 0
        (87Rb)5′ 5 0.098789 0.098789 383.47 (87Rb)6′ 6 0 0 0
        (87Rb)7′ 7 0.070635 0.070635 188.70 (87Rb)8′ 8 0 0 0
        (87Rb)9′ 9 0.054953 0.054953 84.92 (87Rb)10′ 10 0 0 0
        (87Rb)11′ 11 0.044975 0.044975 48.62 (87Rb)12′ 12 0 0 0
        (87Rb)13′ 13 0.038060 0.038060 31.55 (87Rb)14′ 14 0 0 0
        (87Rb)15′ 15 0.032978 0.032978 12.63
        DownLoad: CSV

        团簇分子, 参考分子 基态电子组态和分子态及$ {\lambda }_{\text{合}}$和S 最低激发电子组态及其$ {\lambda }_{\text{合}}$和S(Hund(a)
        情形跃迁规则$\Delta \lambda =0, \pm 1$, $g\;\, \leftrightarrow u$,
        $ \Delta n = 0, \;\; \pm 1, ~\Delta S = 0$
        基态X与最低激发态A
        稳定性比较${P_{\rm{a}}} - {P_{\rm{b}}}$
        87Rb1 $ {\rm{KLMN}}_{\rm{spd}}(\sigma {}_{\rm{g}}\rm{5}\rm{s})$
        ${}^2{\Sigma _{\rm{u} } },$${\lambda }_{\text{合} }=0,$$S = 1/2$
        $ {\rm{KLMN}}_{\rm{spd}}({\text{π}}{}_{\rm{u}}{4}{\rm{d}})$
        ${}^2{\Pi _{\rm{u} } },$${\lambda }_{\text{合} }=1,$$S = 1/2$
        X: ${P_{\rm{a} } } - {P_{\rm{b} } } = 1/2$
        A: ${P_{\rm{a} } } - {P_{\rm{b} } } = 1/2$
        87Rb2
        85Rb2[14]
        ${({\rm{\sigma } }{}_{\rm{g} }5{\rm{s} })^2},$ ${}^1{{\Sigma } }_{\rm{g} }^ +,$ ${\lambda }_{\text{合} }=0,$$S = {{0}}$或
        [${\rm{(\sigma } }{}_{\rm{g} }{\rm{5s} })({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} } ,$ ${}^3{ {\Sigma } }_{\rm{u} }^{ + },$${\lambda }_{\text{合} }=0 ,$$S = {{1}}$]
        ${\rm{(\sigma }}{}_{\rm{g}}{\rm{5 s}})({{\text{π}}_{\rm{u}}}{\rm{4 d)}},$ ${}^1{{\Pi}_{\rm{u}}},$$ {\lambda }_{\text{合}}=1,$$S = {{0}}$或
        [${\rm{(\sigma } }{}_{\rm{u} }{\rm{5s} })({ {\text{π} }_{\rm{u} } }{\rm{4 d)} },$${}^3{{\Pi}_{\rm{g}}},$${\lambda }_{\text{合} }=1,$$S = {{1}}$]
        X: ${P_{\rm{a}}} - {P_{\rm{b}}} = 1 - 0 = 1$
        A: ${P_{\rm{a}}} - {P_{\rm{b}}} = 1 - 0 = 1$
        [X: ${P_{\rm{a} } } - {P_{\rm{b} } } = 1/2 - 1/2 = { {0} }$
        A: ${P_{\rm{a} } } - {P_{\rm{b} } } = 1/2 - 1/2 = { {0} }$]
        87Rb3 ${({\rm{\sigma } }{}_{\rm{g} }{\rm{5 s} })^{ {2} } }({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} } ,$
        ${}^2{{\Sigma } }_{\rm{u} }^ +,$${\lambda }_{\text{合} }=0,$$S = 1/2$
        ${\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s)(} }{ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)(} }{ {\text{π} }_{\rm{u} } }{\rm{4 d)} },$
        ${}^2{ {\Pi}_{\rm{g} } },$${\lambda }_{\text{合} }=1,$$S = 1/2$
        X: ${P_{\rm{a} } } - {P_{\rm{b} } } = 1 - 1/2 = 1/2$
        A: ${P_{\rm{a} } } - {P_{\rm{b} } } = 1 - 1/2 = 1/2$
        87Rb4 ${({\rm{\sigma } }{}_{\rm{g} }{\rm{5 s)} }^{ {2} } }{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^{ {2} } },$
        ${}^1{{\Sigma } }_{\rm{g} }^ +,$${\lambda }_{\text{合} }=0,$$S = {{0}}$
        ${\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s)(} }{ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s} }{ {\rm{)} }^{ {2} } }{\rm{(\pi } }{}_{\rm{u} }{\rm{4 d)} },$
        ${}^1{ {\Pi}_{\rm{u} } },$${\lambda }_{\text{合} }=1,$$S = {{0}}$
        X: ${P_{\rm{a}}} - {P_{\rm{b}}} = 1 - 1 = 0$
        A: ${P_{\rm{a}}} - {P_{\rm{b}}} = 1 - 1 = 0$
        87Rb5 ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} } ,$
        ${}^2{{\Sigma } }_{\rm{g} }^ + ,$${\lambda }_{\text{合} }=0,$$S = 1/2$
        ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^1},$
        ${}^2{ {\Pi}_{\rm{u} } },$${\lambda }_{\text{合} }=1,$$S = 1/2$
        X: ${P_{\rm{a} } } - {P_{\rm{b} } } = 1\frac{1}{2} - 1 = 1/2$
        A: ${P_{\rm{a} } } - {P_{\rm{b} } } = 1\frac{1}{2} - 1 = 1/2$
        87Rb6 ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2},$
        ${}^1{{\Sigma } }_{\rm{g} }^ +,$${\lambda }_{\text{合} }=0,$$S = {{0}}$
        ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)(} }{ {\text{π} }_{\rm{u} } }{\rm{4 d)} },$
        ${}^1{ {\Pi}_{\rm{u} } } ,$${\lambda }_{\text{合} }=1,$$S = {{0}}$
        X: ${P_{\rm{a}}} - {P_{\rm{b}}} = 2 - 1 = 1$
        A: ${P_{\rm{a}}} - {P_{\rm{b}}} = 2 - 1 = 1$
        87Rb7 ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}({ {\text{π} }_{\rm{u} } }{\rm{4 d)} },$
        ${}^2{ {\Pi}_{\rm{u} } },$${\lambda }_{\text{合} }=1,$$S = 1/2$
        ${({\rm{\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^1}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^2} ,$
        ${}^2{ {\Sigma } }_{\rm{g} }^ +,$${\lambda }_{\text{合} }=0,$$S = 1/2$; ${}^2{ { {\Delta } }_{\rm{g} } },$ ${\lambda }_{\text{合} }=2, S =1/2$
        X: ${P_{\rm{a} } } - {P_{\rm{b} } } = 2\frac{1}{2} - 1 = 1\frac{1}{2}$
        A: ${P_{\rm{a} } } - {P_{\rm{b} } } = 2\frac{1}{2} - 1 = 1\frac{1}{2}$
        87Rb8 ${({\rm{\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^2},$
        ${}^1{{\Sigma } }_{\rm{g} }^ +,$${\lambda }_{\text{合} }=0,$$S = {{0}}$
        ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^1}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^3},$
        ${}^1{ {\Pi}_{\rm{u} } },$${\lambda }_{\text{合} }=1,$$S = {{0}}$
        X: ${P_{\rm{a}}} - {P_{\rm{b}}} = 3 - 1 = 2$
        A: ${P_{\rm{a}}} - {P_{\rm{b}}} = 3 - 1 = 2$
        87Rb9 ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^3},$
        ${}^2{ {\Pi}_{\rm{u} } } ,$${\lambda }_{\text{合} }=1,$$S = 1/2$
        ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^1}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4},$
        ${}^2{{\Sigma } }_{\rm{g} }^ + ,$${\lambda }_{\text{合} }=0,$$S = 1/2$; ${}^2{ { {\Delta } }_{\rm{g} } },$ ${\lambda }_{\text{合} }=2, S = 1/2$
        X: ${P_{\rm{a} } } - {P_{\rm{b} } } = 3\frac{1}{2} - 1 = 2\frac{1}{2}$
        A: ${P_{\rm{a} } } - {P_{\rm{b} } } = 3\frac{1}{2} - 1 = 2\frac{1}{2}$
        87Rb10 ${({\rm{\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4},$
        ${}^1{{\Sigma } }_{\rm{g} }^ +,$${\lambda }_{\text{合} }=0,$$S = {{0}}$
        ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^1}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4}{({ {\text{π} }_{\rm{g} } }{\rm{4 d)} }^1},$
        ${}^1{ {\Pi}_{\rm{u} } },$${\lambda }_{\text{合} }=1,$$S = {{0}}$
        X: ${P_{\rm{a}}} - {P_{\rm{b}}} = 4 - 1 = 3$
        A: ${P_{\rm{a}}} - {P_{\rm{b}}} = {\rm{4 - 1}} = {\rm{3}}$
        87Rb11 ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4}{({ {\text{π} }_{\rm{g} } }{\rm{4 d)} }^1},$
        ${}^2{ {\Pi}_{\rm{g} } },$${\lambda }_{\text{合} }=1,$$S = 1/2$
        ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^1}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4}{({ {\text{π} }_{\rm{g} } }{\rm{4 d)} }^2},$
        ${}^2{{\Sigma } }_{\rm{u} }^ + ,$${\lambda }_{\text{合} }=0,$$S = 1/2$; ${}^2{ { {\Delta } }_{\rm{g} } },$${\lambda }_{\text{合} }=2,$ $S = 1/2$
        X: ${P_{\rm{a} } } - {P_{\rm{b} } } = 4 - 1\frac{1}{2} = 2\frac{1}{2}$
        A: ${P_{\rm{a} } } - {P_{\rm{b} } } = 4 - 1\frac{1}{2} = 2\frac{1}{2}$
        87Rb12 ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4}{({ {\text{π} }_{\rm{g} } }{\rm{4 d)} }^2} ,$
        ${}^1{{\Sigma } }_{\rm{g} }^ +,$${\lambda }_{\text{合} }=0,$$S = {{0}}$
        ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^1}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4}{({ {\text{π} }_{\rm{g} } }{\rm{4 d)} }^3},$
        ${}^1{ {\Pi}_{\rm{u} } },$${\lambda }_{\text{合} }=1,$$S = {{0}}$
        X: ${P_{\rm{a}}} - {P_{\rm{b}}} = 4 - 2 = 2$
        A: ${P_{\rm{a}}} - {P_{\rm{b}}} = {\rm{4 - 2}} = {{2}}$
        87Rb13 ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4}{({ {\text{π} }_{\rm{g} } }{\rm{4 d)} }^3},$
        ${}^2{ {\Pi}_{\rm{g} } },$${\lambda }_{\text{合} }=1,$$S = 1/2$
        ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^1}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4}{({ {\text{π} }_{\rm{g} } }{\rm{4 d)} }^4},$
        ${}^2{ {\Pi}_{\rm{u} } } ,$${\lambda }_{\text{合} }=1,$$S = 1/2$
        X: ${P_{\rm{a} } } - {P_{\rm{b} } } = 4 - 2\frac{1}{2} = 1\frac{1}{2}$
        A: ${P_{\rm{a} } } - {P_{\rm{b} } } = 4 - 2\frac{1}{2} = 1\frac{1}{2}$
        87Rb14 ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4}{({ {\text{π} }_{\rm{g} } }{\rm{4 d)} }^4},$
        ${}^1{{\Sigma } }_{\rm{g} }^ +,$${\lambda }_{\text{合} }=0,$$S = {{0}}$
        ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4}{({ {\text{π} }_{\rm{g} } }{\rm{4 d)} }^3} ({ {\rm{\sigma } }_{\rm{u} } }{\rm{4 d)} },$
        ${}^1{ {\Pi}_{\rm{u} } },$${\lambda }_{\text{合} }=1,$$S = {{0}}$
        X: ${P_{\rm{a}}} - {P_{\rm{b}}} = 4 - 3 = 1$
        A: ${P_{\rm{a}}} - {P_{\rm{b}}} = 4 - 3 = 1$
        87Rb15 ${({\rm{\sigma } }{}_{\rm{g} }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4}{({ {\text{π} }_{\rm{g} } }{\rm{4 d)} }^4}({ {\rm{\sigma } }_{\rm{u} } }{\rm{4 d)} },$
        ${}^2{{\Sigma } }_{\rm{u} }^ +,$${\lambda }_{\text{合} }=0,$$S = 1/2$
        ${({\rm{\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4}{({ {\text{π} }_{\rm{g} } }{\rm{4 d)} }^3}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{4 d)} }^2},$${}^2{ {\Pi}_{\rm{g} } },$${\lambda }_{\text{合} }=1,$$S = 1/2$ X: ${P_{\rm{a} } } - {P_{\rm{b} } } = 4-3\frac{1}{2} = \frac{1}{2}$
        A: ${P_{\rm{a} } } - {P_{\rm{b} } } = 4-3\frac{1}{2} = \frac{1}{2}$
        注: 表中电子组态仅87Rb1的基态和激发态标出了闭壳层KLMNspd, 其他粒子没有重复标出闭壳层KLMNspd.
        DownLoad: CSV

        n为奇数
        的簇分子
        n为奇数的
        分子项
        5s价电子
        个数
        $\bar \mu {}_n$/μB ${\bar g_n}$ n为偶数
        的簇分子
        n为偶数的
        分子项
        5s价电
        子个数
        $\bar \mu {}_n$/μB ${\bar g_n}$
        87Rb1 ${}^2{\Pi _{\rm{u}}}$ 1 $1/2$ $1/2$ 87Rb2 ${}^2{\Pi _{\rm{g}}}$ 2 $1/4$ $1/4$
        87Rb3 ${}^2{\Pi _{\rm{g}}}$ 3 $1/6$ $1/6$ 87Rb4 ${}^2{\Pi _{\rm{u}}}$ 4 0 0
        87Rb5 ${}^2{\Pi _{\rm{u}}}$ 5 $1/10$ $1/10$ 87Rb6 ${}^2{\Pi _{\rm{u}}}$ 6 0 0
        87Rb7 ${}^2{\Pi _{\rm{u}}}$ 7 $1/14$ $1/14$ 87Rb8 ${}^1{\Pi _{\rm{u}}}$ 8 0 0
        87Rb9 ${}^2{\Pi _{\rm{u}}}$ 9 $1/18$ $1/18$ 87Rb10 ${}^2{\Pi _{\rm{u}}}$ 10 0 0
        87Rb11 ${}^2{\Pi _{\rm{g}}}$ 11 $1/22$ $1/22$ 87Rb12 ${}^2{\Pi _{\rm{u}}}$ 12 0 0
        87Rb13 ${}^2{\Pi _{\rm{g}}}$ 13 $1/26$ $1/26$ 87Rb14 ${}^2{\Pi _{\rm{u}}}$ 14 0 0
        87Rb15 ${}^2{\Pi _{\rm{g}}}$ 15 $1/30$ $1/30$
        DownLoad: CSV

        团簇
        87Rbn
        n $\bar \mu {}_n$/μB 团簇
        (87Rb)${}_{n'} $
        $n'$ $\bar \mu {}_{n'}$/μB 磁矩的相对误差% ${\bar A_{n'} }$/mV ${\bar A_{n'}}$与${\bar A_n}$
        比较
        87Rb1 1 $1/2$ 87Rb1 1 0.494337 1.1326 1574.50 一致
        87Rb2 2 $1/4$ (87Rb)2′ 2 0.246984 1.2063 105.75 线性分子简并态
        87Rb3 3 $1/6$ (87Rb)3′ 3 0.164598 1.2411 883.07 一致
        87Rb4 4 0 (87Rb)4′ 4 0 0 0 0
        87Rb5 5 $1/10$ (87Rb)5′ 5 0.098789 1.2110 383.47 一致
        87Rb6 6 0 (87Rb)6′ 6 0 0 0 0
        87Rb7 7 $1/14$ (87Rb)7′ 7 0.070635 1.1042 188.70 一致
        87Rb8 8 0 (87Rb)8′ 8 0 0 0 0
        87Rb9 9 $1/18$ (87Rb)9′ 9 0.054953 1.0843 84.92 一致
        87Rb10 10 0 (87Rb)10′ 10 0 0 0 0
        87Rb11 11 $1/22$ (87Rb)11′ 11 0.044975 1.0556 48.62 一致
        87Rb12 12 0 (87Rb)12′ 12 0 0 0 0
        87Rb13 13 $1/26$ (87Rb)13′ 13 0.038060 1.0467 31.55 一致
        87Rb14 14 0 (87Rb)14′ 14 0 0 0 0
        87Rb15 15 $1/30$ (87Rb)15′ 15 0.032978 1.0658 12.63 一致
        15种簇粒子(87Rb)${}_{n'} $与87Rbn的磁矩相对误差均值为: 0.6765%
        9种磁矩不为0的簇粒子(87Rb)${}_{n'} $与87Rbn的磁矩相对误差均值为: 1.1275%
        DownLoad: CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

      • [1] Di Shu-Hong, Zhang Yang, Yang Hui-Jing, Cui Nai-Zhong, Li Yan-Kun, Liu Hui-Yuan, Li Ling-Li, Shi Feng-Liang, Jia Yu-Xuan.Quantitative study on isotope effect of rubidium clusters. Acta Physica Sinica, 2023, 72(18): 182101.doi:10.7498/aps.72.20230778
        [2] Cao Ben, Guan Li-Nan, Gu Hua-Guang.Bifurcation mechanism of not increase but decrease of spike number within a neural burst induced by excitatory effect. Acta Physica Sinica, 2018, 67(24): 240502.doi:10.7498/aps.67.20181675
        [3] Xing Wei, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lüe.Theoretical study of spectroscopic properties of 5 -S and 10 states and laser cooling for AlH+ cation. Acta Physica Sinica, 2018, 67(19): 193101.doi:10.7498/aps.67.20180926
        [4] Wang Meng, Bai Jin-Hai, Pei Li-Ya, Lu Xiao-Gang, Gao Yan-Lei, Wang Ru-Quan, Wu Ling-An, Yang Shi-Ping, Pang Zhao-Guang, Fu Pan-Ming, Zuo Zhan-Chun.Electromagnetically induced transparency in a near-resonance coupling field. Acta Physica Sinica, 2015, 64(15): 154208.doi:10.7498/aps.64.154208
        [5] Yin Bai-Qiang, He Yi-Gang, Wu Xian-Ming.A method for magnetocardiograms filtering based on singular value decomposition and S-transform. Acta Physica Sinica, 2013, 62(14): 148702.doi:10.7498/aps.62.148702
        [6] Yang Yan, Ji Zhong-Hua, Yuan Jin-Peng, Wang Li-Rong, Zhao Yan-Ting, Ma Jie, Xiao Lian-Tuan, Jia Suo-Tang.Experimental study of rovibrational spectrum of ultracold polar RbCs molecules. Acta Physica Sinica, 2012, 61(21): 213301.doi:10.7498/aps.61.213301
        [7] Han Guang, Qiang Jian-Bing, Wang Qing, Wang Ying-Min, Xia Jun-Hai, Zhu Chun-Lei, Quan Shi-Guang, Dong Chuang.Electrochemical potential equilibrium of electrons in ideal metallic glasses based on the cluster-resonance model. Acta Physica Sinica, 2012, 61(3): 036402.doi:10.7498/aps.61.036402
        [8] Zhang Xiu-Rong, Wu Li-Qing, Rao Qian.Theoretical study of electronic structure and optical properties of OsnN0,(n=1 6) clusters. Acta Physica Sinica, 2011, 60(8): 083601.doi:10.7498/aps.60.083601
        [9] Tang Hui-Shuai, Zhang Xiu-Rong, Gao Cong-Hua, Wu Li-Qing.The theory study of electronic structures and spectram properties of WnNim(n+m≤7; m=1, 2) clusters. Acta Physica Sinica, 2010, 59(8): 5429-5438.doi:10.7498/aps.59.5429
        [10] Liu Shi-Bing, Liu Yuan-Xing, He Run, Chen Tao.Instantaneous characteristics of excited atom state 5s' 4D7/2 in the copper plasma induced by laser. Acta Physica Sinica, 2010, 59(8): 5382-5386.doi:10.7498/aps.59.5382
        [11] Jin Xiao-Lin, Huang Tao, Liao Ping, Yang Zhong-Hai.The particle-in-cell simulation and Monte Carlo collision simulation of the interaction between electrons and microwave in electron cyclotron resonance discharge. Acta Physica Sinica, 2009, 58(8): 5526-5531.doi:10.7498/aps.58.5526
        [12] Yang Liu, Yin Chun-Hao, Jiao Yang, Zhang Lei, Song Ning, Ru Rui-Peng.Spectrum structure and g factor of electron paramagnetic resonance of LiCoO2 crystal doped with Ni. Acta Physica Sinica, 2006, 55(4): 1991-1996.doi:10.7498/aps.55.1991
        [13] Fang Fang, Jiang Gang, Wang Hong-Yan.Structures and properties of small bimetallic PdnPbm(n+m≤5) clusters. Acta Physica Sinica, 2006, 55(5): 2241-2248.doi:10.7498/aps.55.2241
        [14] Chen Zhuo, He Wei, Pu Yi-Kang.Measurement of metastable state densities and electron temperatures in an electron cyclotron resonance argon plasma. Acta Physica Sinica, 2005, 54(5): 2153-2157.doi:10.7498/aps.54.2153
        [15] CHEN ZHANG-HAI, HU CAN-MING, CHEN JIAN-XIN, SHI GUO-LIANG, LIU PU-LIN, SHEN XUE-CHU, LI AI-ZHEN.STUDY ON CYCLOTRON RESONANCE SPECTRA OF TWO-DIMENSIONAL ELECTRON GASES IN PSEUDOMORPHIC InxGa1-xAs/In0.52Al0.48As HETEROJUNCTIONS. Acta Physica Sinica, 1998, 47(6): 1018-1025.doi:10.7498/aps.47.1018
        [16] ZHANG QUN, SHU JI-NAN, XIE LI-LI, DAI JING-HUA, ZHANG LI-MIN, LI QUAN-XIN.DETERMINATION OF 3d AND 5s RYDBERG STATES OF SF2 RADICAL. Acta Physica Sinica, 1998, 47(11): 1776-1782.doi:10.7498/aps.47.1776
        [17] LIN ZUN-QI, CHEN WEN-HUA, YU WEN-YAN, TAN WEI-HAN, ZHENG YU-XIA, WANG GUAN-ZHI, GU MIN, ZHANG HUI-HUANG, CHENG RUI-HUA, CUI JI-XIU, DENG XI-MING.POPULATION INVERSION OF ENERGY LEVELS OF MgXI 1s3p AND 1s4p UNDER THE CONDITION OF AVERAGE HIGH TEMPERATURE AND HIGH ELECTRON DENSITY. Acta Physica Sinica, 1988, 37(8): 1236-1243.doi:10.7498/aps.37.1236
        [18] SUN XIN, LU YAN, LUO LIAO-FU.THE SPECTRA OF MONOPOLE HYDROGEN ATOM. Acta Physica Sinica, 1978, 27(4): 430-438.doi:10.7498/aps.27.430
        [19] .. Acta Physica Sinica, 1975, 24(2): 145-150.doi:10.7498/aps.24.145
        [20] .иCCлEдOBAHиE лPOЦECCA лPOXOЖдEHиЯ ЧACTиЦ ЧEP3 HEлиHEйHYЮ PE3OHAHCHYЮ лиHЮ лиHиЮ (Qρ=6/5) B ЦиКлOTPOHE C лPOCTPAHCTBEHHOй BAPиAЦиEй. Acta Physica Sinica, 1964, 20(7): 636-642.doi:10.7498/aps.20.636
      • supplement122101-20210031补充材料.rar supplement
      Metrics
      • Abstract views:4767
      • PDF Downloads:45
      • Cited By:0
      Publishing process
      • Received Date:06 January 2021
      • Accepted Date:25 January 2021
      • Available Online:17 June 2021
      • Published Online:20 June 2021

        返回文章
        返回
          Baidu
          map