Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

Gao Jing-Yi, Sun Jia-Xing, Wang Xun, Zhou Gang, Wang Hao, Liu Yan-Xia, Xu Dong-Sheng
PDF
HTML
Get Citation
  • Researchers’ work on computational materials is often hampered by the lack of suitable intera tomic potentials. In this paper, under the framework of Finnis-Sinclair (FS) potentials, the process of fitting, testing and correction of interatomic potential is given in detail by developing the FS potential for metal Nb. First, the relationship between the interatomic potential and the macroscopic properties of the material is established. Then, the Finnis-Sinclair potential of metal Nb is fitted by reproducing the experimental data, such as the cohesive energy, bulk modulus, surface energy, vacancy formation energy and equilibrium lattice constant, and the fitting mean square error is less than 10 –7. In order to test the interatomic potential, the elastic constant, shear modulus and Cauchy pressure of metal Nb are calculated by the constructed interatomic potential. In addition, how the form of the interatomic potential function affects the interstitial performance is discussed, and the constructed interatomic potential is modified according to the results of density functional theory (DFT) of the interstitial formation energy. The treatment of cutoff distance is also discussed. In the paper, the results are as follows. 1) The original form of FS potential is not suitable for extending the atomic interaction to the third nearest neighbor. Through analysis and test, it is found that when the modified electron density function is in the form of the fourth power and the form of the pair potential function is in the form of the sixth power polynomial, the interatomic potential can better describe the interatomic interaction; 2) The result of interstitial formation energy is taken as the target value to modify the behavior of the pair potential function in the near distance, and the modified interatomic potential gives the interstitial formation energy close to the result of DFT. When the interstitial energy calculated by the interatomic potential is larger than the target value, the pair potential curve of near distance will be softened by the superposition of a polynomial term, otherwise, the pair potential curve will be stiffened; 3) When the physical quantity under equilibrium state is used as the fitting data, the fitted potential parameters and the elastic constant results will not be affected, while adjusting the curve form of the potential function, as long as none of the function value, the slope and the curvature of the function curve is changed at each neighbor position. The magnitude of interstitial energy will be affected by changing the shape of the curve that is less than the first neighbor range; 4) Under the cutoff strategy in this paper, changing the cutoff distance has almost no influence on the calculated results of potential parameters or crystal properties, but has a slight influence on the mean square error of the fitting results. The results of this paper provide some information for the construction of interatomic potentials database, and lay a foundation for constructing the Nb-related interatomic potential of alloy. And it also provides a method and basis for developing and improving the quality of interatomic potential.
        Corresponding author:Liu Yan-Xia,ldlyx@163.com
      • Funds:Project supported by the National Key Research & Development Program of China (Grant No. 2016YFB0701304)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

    • 间隙构型 距离及等价原子数
      挤列子 距离 $\dfrac{ {\sqrt 3 } }{ {4} }{a }$ $\dfrac{{\sqrt 11 }}{{4}}{a}$ $\dfrac{{\sqrt {{\rm{19}}} }}{{4}}{\rm{a}}$ $\dfrac{{\sqrt {{\rm{27}}} }}{{4}}{a}$ $\dfrac{{\sqrt {{\rm{35}}} }}{{4}}{a}$ $\dfrac{{\sqrt {{\rm{43}}} }}{{4}}{a}$
      原子数 2 6 6 8 12 6
      八面体 距离 $\dfrac{1}{2}{a}$ $\dfrac{{\sqrt 2 }}{2}{a}$ $\dfrac{{\sqrt {\rm{5}} }}{2}{a}$ $\dfrac{{\sqrt 6 }}{2}{a}$ $\dfrac{3}{2}{a}$
      原子数 2 4 8 8 10
      四面体 距离 $\dfrac{{\sqrt {\rm{5}} }}{{4}}{a}$ $\dfrac{{\sqrt {{\rm{13}}} }}{{4}}{a}$ $\dfrac{{\sqrt {{\rm{21}}} }}{{4}}{a}$ $\dfrac{{\sqrt {{\rm{29}}} }}{{4}}{a}$ $\dfrac{{\sqrt {{\rm{37}}} }}{{4}}{a}$
      原子数 4 4 8 12 4
      DownLoad: CSV

      数值 a Ec/eV B/(1011Pa) Eγ100/
      (mJ·m–2)
      $E_{\rm{v}}^{\rm{f}}$/eV
      实验值 3.3008 7.57 1.710 2046 2.64
      本文计
      算值
      3.3008 7.57 1.710 2050 2.64
      DownLoad: CSV

      均方差/10–8 c0 c1 c2 A/eV
      无修
      正项
      6.63447 0.262198 –0.138974 0.0184461 0.636219
      带修
      正项
      6.63447 0.262198 –0.138974 0.0184461 0.636219
      DownLoad: CSV

      C44 C11 C12 $C' $ Pc
      实验值[2] 0.281 2.466 1.332 0.546 0.5255
      本文结果 0.567 2.343 1.393 0.475 0.4134
      DownLoad: CSV

      FS[21] FS(87)[22] FS(87)未驰豫 DFT[24] DFT[25] 本文无修正项 本文有修正项
      Cutoff c 4.2 4.2 4.2 5.31261 5.31261
      d 3.915354 3.915354 3.915354 5.0709 5.0709
      $ \left\langle {111} \right\rangle $ crow 4.857 4.10 9.037 5.254 5.255 15.487 6.977
      $ \left\langle {111} \right\rangle $ dum 4.795 6.610 5.253 5.203 10.749 7.775
      $ \left\langle {110} \right\rangle $ dum 4.482 3.99 5.930 5.597 5.684 7.148 4.425
      $ \left\langle {100} \right\rangle $ dum 4.821 4.13 8.385 5.949 6.005 13.844 7.616
      Tetrahedral 4.26 6.893 5.758 5.733 10.659 6.371
      Octahedral 4.23 6.850 6.060 6.009 11.069 6.659
      DownLoad: CSV

      函数形式 (35), (36)式 (35), (6)式 (5), (6)式 (5), (32), (33)式 (5), (32), (34)式
      c0 –20.2072 –14.0543 0.262198 0.262198 0.262198
      c1 15.4683 11.0332 –0.138974 –0.138974 –0.138974
      c2 –2.81702 –2.04351 0.0184461 0.0184461 0.0184461
      A 1.28710 0.636966 0.636219 0.636219 0.636219
      DownLoad: CSV

      函数形式 (35), (36)式 (35), (6)式 (5), (6)式 (5), (32), (33)式 (5), (32), (34)式
      C11 8.19854 2.05366 2.34302 2.34302 2.34302
      C12 –2.88593 1.53817 1.39349 1.39349 1.39349
      $C' $ 5.54235 0.257745 0.474767 0.474767 0.474767
      C44 –3.20776 1.21374 0.56664 0.56664 0.56664
      Pc 0.160915 0.162217 0.413424 0.413424 0.413424
      Octahedral –75.9256 14.5432 11.0693 7.9909 6.65925
      Tetrahedral –80.0616 13.9223 10.6593 7.53737 6.37076
      $ \left\langle {111} \right\rangle $ crow –89.9140 20.9320 15.4871 11.0992 6.97688
      $ \left\langle {100} \right\rangle $ dum –947.486 15.2250 13.8439 9.57021 7.61644
      $ \left\langle {110} \right\rangle $ dum –954.052 5.00180 7.14750 4.56348 4.42502
      $ \left\langle {111} \right\rangle $ dum 72.3004 17.9239 10.7490 8.12406 7.77466
      DownLoad: CSV

      截断距离 x= 0.55 x= 0.70 x= 0.80
      均方差 1.9669 × 10–7 1.3307 × 10–7 6.6345 × 10–8
      B 1.06741 1.06742 1.06742
      ${\gamma _{100}}$ 0.128159 0.12808 0.12808
      $E_{\rm{v}}^{\rm{f}}$ 2.63998 2.63999 2.63999
      ${E_C}$ 7.57 7.57 7.57
      C11 2.33551 2.34081 2.34302
      C12 1.39724 1.3946 1.39349
      $C' $ 0.469137 0.473105 0.474767
      C44 0.570392 0.567749 0.56664
      Pc 0.413424 0.413424 0.413424
      Octahedral 6.93421 6.76073 6.65925
      Tetrahedral 6.62507 6.46365 6.37076
      $ \left\langle {111} \right\rangle $ crow 7.45171 7.15594 6.97688
      $ \left\langle {100} \right\rangle $ dum 8.30897 7.90098 7.61644
      $ \left\langle {110} \right\rangle $ dum 4.80878 4.59369 4.42502
      $ \left\langle {111} \right\rangle $ dum 8.06717 7.89704 7.77466
      DownLoad: CSV

      截断距离 y= 0.45 y= 0.50 y= 0.60
      均方差 1.57065 × 10–7 6.6345 × 10–8 1.08929 × 10–10
      B 1.06742 1.06742 1.06742
      ${\gamma _{100}}$ 0.128111 0.12808 0.127726
      $E_{\rm{v}}^{\rm{f}}$ 2.63999 2.63999 2.64000
      ${E_{\rm{C}}}$ 7.57 7.57 7.57
      C11 2.35341 2.34302 2.32299
      C12 1.38830 1.39349 1.40351
      $c'$ 0.482555 0.474767 0.45974
      C44 0.533568 0.56664 0.627336
      Pc 0.427366 0.413424 0.388087
      Octahedral 6.42699 6.65925 7.07134
      Tetrahedral 6.14925 6.37076 6.76314
      $ \left\langle {111} \right\rangle $ crow 6.63230 6.97688 7.59196
      $ \left\langle {100} \right\rangle $ dum 7.50874 7.61644 7.80542
      $ \left\langle {110} \right\rangle $ dum 4.53049 4.42502 4.23158
      $111 $ dum 7.28896 7.77466 9.07468
      DownLoad: CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

    • [1] Tian Xiao-Lin, Zhao Yu-Hong, Tian Jin-Zhong, Hou Hua.Effects of interatomic potential on precipitation sequences of medium Al concentration in Ni75AlxV25-xalloys. Acta Physica Sinica, 2018, 67(23): 230201.doi:10.7498/aps.67.20181366
      [2] Chen Zhi-Peng, Ma Ya-Nan, Lin Xue-Ling, Pan Feng-Chun, Xi Li-Ying, Ma Zhi, Zheng Fu, Wang Yan-Qing, Chen Huan-Ming.Electronic structure and mechanical properties of Nb-doped -TiAl intermetallic compound. Acta Physica Sinica, 2017, 66(19): 196101.doi:10.7498/aps.66.196101
      [3] Liu Yan, Jia Cheng, Guo Fu-Ming, Yang Yu-Jun.Influence of atomic potential on the generation of high harmonic generation from the atoms irradiated by mid-infrared laser pulses. Acta Physica Sinica, 2016, 65(3): 033201.doi:10.7498/aps.65.033201
      [4] Sun Su-Rong, Wang Hai-Xing.A comparison of interatomic potentials for noble gases. Acta Physica Sinica, 2015, 64(14): 143401.doi:10.7498/aps.64.143401
      [5] Chang Long, Jian Yong-Jun.Time periodic electroosmotic flow of the generalized Maxwell fluids between two micro-parallel plates with high Zeta potential. Acta Physica Sinica, 2012, 61(12): 124702.doi:10.7498/aps.61.124702
      [6] Rao Jian-Ping, Ouyang Chu-Ying, Lei Min-Sheng, Jiang Feng-Yi.First principles investigation of interaction between interstitials H atom and Nb metal. Acta Physica Sinica, 2012, 61(4): 047105.doi:10.7498/aps.61.047105
      [7] Wu Yang, Duan Hai-Ming.Study of structure evolution of (C60)N clusters usingLennard-Jones atom-atom potential. Acta Physica Sinica, 2011, 60(7): 076102.doi:10.7498/aps.60.076102
      [8] Wang Zhao-Ke, Wu Yong-Quan, Shen Tong, Liu Yi-Hu, Jiang Guo-Chang.Long-range Finnis-Sinclair potential for Zn-Mg alloy. Acta Physica Sinica, 2011, 60(8): 086105.doi:10.7498/aps.60.086105
      [9] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai.Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, 2010, 59(1): 515-520.doi:10.7498/aps.59.515
      [10] Li Hui-Shan, Li Peng-Cheng, Zhou Xiao-Xin.Role of potential function in high order harmonic generation of model hydrogen atoms in intense laser field. Acta Physica Sinica, 2009, 58(11): 7633-7639.doi:10.7498/aps.58.7633
      [11] Hu Zhi-Gang, Liu Yi-Hu, Wu Yong-Quan, Shen Tong, Wang Zhao-Ke.Long-range Finnis-Sinclair potential for molecular dynamics simulation of α-Al2O3. Acta Physica Sinica, 2009, 58(11): 7838-7844.doi:10.7498/aps.58.7838
      [12] Liu Yan-Xia, Wang Xun, Ma Yong-Qing, Zhang Cheng-Hua.The construction and application of the many-body potential for the Fe-Cr-V-Ni-Si-C system multi-component alloy. Acta Physica Sinica, 2008, 57(1): 358-363.doi:10.7498/aps.57.358
      [13] Jia Hong-Xiang, Meng Xu-Jun.An average-atom model with potential-well and mixed form of exchange potential. Acta Physica Sinica, 2005, 54(1): 70-77.doi:10.7498/aps.54.70
      [14] SUN JIU-XUN.EXACTLY SOLVABLE POTENTIAL WITH FOUR PARAMETERS FOR DIATOMIC MOLECULES. Acta Physica Sinica, 1999, 48(11): 1992-1998.doi:10.7498/aps.48.1992
      [15] FENG SHAO-XIN, JIN QING-HUA, GUO ZHEN-YA, LI BAO-HUI, DING DA-TONG.EMPIRICAL PARAMETERIZATION OF INTER-IONIC POTENTIALS FOR ALKALINE EARTH FLUORIDES. Acta Physica Sinica, 1998, 47(11): 1811-1817.doi:10.7498/aps.47.1811
      [16] SUN JIU-XUN, ZHANG LI-YUAN.TWO EXACTLY SOLVABLE POTENTIALS FOR DIATOMIC MOLECULES. Acta Physica Sinica, 1996, 45(12): 1953-1959.doi:10.7498/aps.45.1953
      [17] YANG DE-QING.A NEW METHOD OF CALCULATING ATOMIC RADIUS AND WORK FUNCTION OF METALS. Acta Physica Sinica, 1994, 43(9): 1507-1516.doi:10.7498/aps.43.1507
      [18] CHEN JIN-YU, DING E-JIANG.WETTING TRANSITIONS OF A SIMPLE FLUID CONFINED BETWEEN DIFFERENT PARALLEL WALLS. Acta Physica Sinica, 1993, 42(8): 1278-1289.doi:10.7498/aps.42.1278
      [19] LI SHU-SHAN, LIN GUANG-HAI.CALCULATION OF ELASTIC CONSTANTS OF SIMPLE METALS BY PSEUDOPOTENTIAL METHOD. Acta Physica Sinica, 1982, 31(1): 38-49.doi:10.7498/aps.31.38
      [20] C. C. YANG.. Acta Physica Sinica, 1966, 22(3): 294-303.doi:10.7498/aps.22.294
    Metrics
    • Abstract views:5803
    • PDF Downloads:139
    • Cited By:0
    Publishing process
    • Received Date:21 December 2020
    • Accepted Date:27 January 2021
    • Available Online:29 May 2021
    • Published Online:05 June 2021

      返回文章
      返回
        Baidu
        map