Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

Zhong Dong-Zhou, Zeng Neng, Yang Hua, Xu Zhe
PDF
HTML
Get Citation
  • The ranging based on the chaotic lidar (CLR) generated by using the nonlinear dynamic of semiconductor with optical feedback or optical injection exhibits many advantages over the ranging using pulse lasers and CW lasers, such as low probability of intercept, strong anti-interference ability and low cost. Moreover, it has high resolution, benefiting from the broad bandwidth of the optical chaos. Finally, it is easily be generated and controlled due to the sensitivity of chaotic radar to laser parameters. The resolution of the correlated chaotic lidar (CLR) ranging which has been reported in many literatures is largely limited by the bandwidth of the chaotic laser. An ultra-fast chaotic laser with large modulation bandwidth is required to further improve the ranging resolution. The recently proposed optically pumped spin-VCSEL has attractive features such as flexible spin control of lasing output, fast dynamics with femtosecond magnitude and large modulation bandwidth. The ultra-fast chaos radar wave emitted from the optically pumped spin-VCSEL with optical injection or optical feedback is expected to be used for improving the resolution and accuracy of target ranging. In addition, since the multi beams of CLRs were utilized in the previous works, the number of ranging targets is limited to a small number of targets. The reported CLR ranging technology cannot completely detect the distance of different regions in the target, and it is not suitable for the accurate ranging of the whole area in the complex shape target. The detection waveform based on the correlation CLR has not been designed before the target ranging, which affects the further improvement of the resolution and accuracy of the target ranging. To overcome these problems, it is necessary to further explore the theoretical and physical mechanism of the CLR ranging for the multi-region in complex shape target, and explore the new scheme and method for its realization. Motivated by these, in this paper, based on the optically pumped spin vertical cavity surface emitting laser with optical injection, we present a novel scheme for the accurate ranging of the multi regions in two complex shape targets, using two chaotic polarization components modulated by the bipolar sinc waveform. Here, these two modulated chaotic polarization probe waveforms possess the attractive features of the uncorrelation in time and space, fast dynamic with femtosecond magnitude. Utilizing these features, the accurate ranging to the position vectors of the multi regions of two complex-shape targets can be achieved by correlating the multi beams of the time-delay reflected chaotic polarization probe waveforms with their corresponding reference waveforms. The further investigations show that the ranging to the multi-region small targets possesses the very low relative error that is less than 0.94%. If the bandwidths of the photodetectors are large enough, their range resolutions are achieved as high as 0.4 mm, and exhibit excellent strong anti-noise performance and strong stability. The multi area target ranging proposed in our scheme has the following attractive advantages: stable and high range resolution, strong anti-noise ability and very low relative error. These characteristics can meet the needs of the position vector ranging of the multi regions in complex shape targets.
        Corresponding author:Zhong Dong-Zhou,dream_yu2002@126.com
      • Funds:Project supported by the National Natural Science Foundation of China (Grant No. 62075168), the Major Project of Basic Research and Applied Research for Natural Science of Guangdong Province, China (Grant No. 2017KZDX086), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2020A1515011088), and the Special Project in Key Fields of the Higher Education Institutions of Guangdong Province (the NewGeneration of Communication Technology), China (Grant No. 2020zdzx3052)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

    • 符号 参数
      $ \alpha $ 线宽增益因子 4
      $ \eta $ 总归一化泵浦功率 9
      $ \kappa $ 场衰减率 300
      p 泵浦极化椭圆率 1
      $ \beta $ 自发耦合因子 $ 10^9 $
      $ \gamma $ 电子密度衰减率 $1\; {\rm {ns}}^{-1} $
      $\gamma_{\rm a}$ 线性二向色性 $10\; {\rm {ns}}^{-1} $
      $\gamma_{\rm p}$ 线性双折射效应 $60\; {\rm {ns}}^{-1} $
      $\gamma_{\rm s}$ 自旋弛豫率 $120\; {\rm {ns}}^{-1} $
      $ k_{xinj} $ x-PC的光注入强度 $10\; {\rm {ns}}^{-1} $
      $ k_{yinj} $ y-PC的光注入强度 $10\; {\rm {ns}}^{-1} $
      $ \Delta \omega $ 频率失谐 30 × 109rad/s
      DownLoad: CSV

      ${{\mathit{\boldsymbol{r}}}}_{{1}, {{{j}}}}$ 位置矢量 ${{\mathit{\boldsymbol{r}}}}_{{1}, {{{j}}}} $ 位置矢量
      $ {{\mathit{\boldsymbol{r}}}}_{{1}, {1}} $ $-5 {{\mathit{\boldsymbol{e}}}}_{{x}} -3 {{\mathit{\boldsymbol{e}}}}_{{y}} $ $ {{\mathit{\boldsymbol{r}}}}_{{1}, {6}} $ $-2.5 {{\mathit{\boldsymbol{e}}}}_{{x}} -3{{\mathit{\boldsymbol{e}}}}_{{y}} $
      $ {{\mathit{\boldsymbol{r}}}}_{{1}, {2}} $ $ -4.5 {{\mathit{\boldsymbol{e}}}}_{{x}} -3 {{\mathit{\boldsymbol{e}}}}_{{y}} $ $ {{\mathit{\boldsymbol{r}}}}_{{1}, {7}} $ $-2 {{\mathit{\boldsymbol{e}}}}_{{x}} -3 {{\mathit{\boldsymbol{e}}}}_{{y}} $
      $ {{\mathit{\boldsymbol{r}}}}_{{1}, {3}} $ $-4 {{\mathit{\boldsymbol{e}}}}_{{x}} -3 {{\mathit{\boldsymbol{e}}}}_{{y}} $ $ {{\mathit{\boldsymbol{r}}}}_{{1}, {8}} $ $ -1.5{{\mathit{\boldsymbol{e}}}}_{{x}} -3 {{\mathit{\boldsymbol{e}}}}_{{y}} $
      $ {{\mathit{\boldsymbol{r}}}}_{{1}, {4}} $ $-3.5 {{\mathit{\boldsymbol{e}}}}_{{x}} -3 {{\mathit{\boldsymbol{e}}}}_{{y}} $ $ {{\mathit{\boldsymbol{r}}}}_{{1}, {9}} $ $-1 {{\mathit{\boldsymbol{e}}}}_{{x}} -3 {{\mathit{\boldsymbol{e}}}}_{{y}} $
      $ {{\mathit{\boldsymbol{r}}}}_{{1}, {5}} $ $-3 {{\mathit{\boldsymbol{e}}}}_{{x}} -3 {{\mathit{\boldsymbol{e}}}}_{{y}} $ $ {{\mathit{\boldsymbol{r}}}}_{{1}, {10}} $ $-0.5 {{\mathit{\boldsymbol{e}}}}_{{x}} -3 {{\mathit{\boldsymbol{e}}}}_{{y}} $
      DownLoad: CSV

      小区域$ A_{j} $ 目标点$ A^{(\iota)}_{j} $ $ {{\mathit{\boldsymbol{d}}}}_{{{A}}^{(\iota)}_{j}} $ $ \overline{{{\mathit{\boldsymbol{r}}}}}_{{{A}}^{(\iota)}_{j}} $ $ RE^{(\iota)}_{j} $
      $ A_1 $ $ A^{(1)}_1 $ 0$ {{\mathit{\boldsymbol{e}}}}_{x}$ + 0.2$ {{\mathit{\boldsymbol{e}}}}_y$ –0.0001$ {{\mathit{\boldsymbol{e}}}}_{x}$ + 0.2$ {{\mathit{\boldsymbol{e}}}}_y $ 0.04%
      $ A^{(2)}_1 $ –0.05$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.17$ {{\mathit{\boldsymbol{e}}}}_y $ –0.0498$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.17$ {{\mathit{\boldsymbol{e}}}}_y $ 0.14%
      $ A^{(3)}_1 $ 0$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ –0.0002$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ 0.13%
      $ A_2 $ $ A^{(1)}_2 $ –0.1$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ –0.0999$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ 0.07%
      $ A^{(2)}_2 $ –0.12$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.1$ {{\mathit{\boldsymbol{e}}}}_y $ –0.1199$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.1$ {{\mathit{\boldsymbol{e}}}}_y $ 0.05%
      $ A^{(3)}_2 $ –0.05$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.1$ {{\mathit{\boldsymbol{e}}}}_y $ –0.0499$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.1001$ {{\mathit{\boldsymbol{e}}}}_y $ 0.09%
      $ A^{(4)}_2 $ –0.1$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.03$ {{\mathit{\boldsymbol{e}}}}_y $ –0.1002$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.03$ {{\mathit{\boldsymbol{e}}}}_y $ 0.19%
      $ A_3 $ $ A^{(1)}_3 $ 0.05$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.1$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0501$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.1$ {{\mathit{\boldsymbol{e}}}}_y $ 0.06%
      $ A^{(2)}_3 $ 0.02$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.03$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0197$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.03$ {{\mathit{\boldsymbol{e}}}}_y $ 0.88%
      $ A^{(3)}_3 $ 0.06$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.02$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0597$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0.02$ {{\mathit{\boldsymbol{e}}}}_y $ 0.49%
      $ A_4 $ $ A^{(1)}_4 $ –0.16$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.01$ {{\mathit{\boldsymbol{e}}}}_y $ –0.1599$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.01$ {{\mathit{\boldsymbol{e}}}}_y $ 0.08%
      $ A^{(2)}_4 $ –0.12$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.05$ {{\mathit{\boldsymbol{e}}}}_y $ –0.1197$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.05$ {{\mathit{\boldsymbol{e}}}}_y $ 0.21%
      $ A^{(3)}_4 $ –0.16$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.1$ {{\mathit{\boldsymbol{e}}}}_y $ –0.1602$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.1$ {{\mathit{\boldsymbol{e}}}}_y $ 0.11%
      $ A_5 $ $ A^{(1)}_5 $ –0.02$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0$ {{\mathit{\boldsymbol{e}}}}_y $ –0.0198$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0$ {{\mathit{\boldsymbol{e}}}}_y $ 0.94%
      $ A^{(2)}_5 $ –0.05$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.05$ {{\mathit{\boldsymbol{e}}}}_y $ –0.05$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.05$ {{\mathit{\boldsymbol{e}}}}_y $ 0
      $ A^{(3)}_5 $ 0$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.05$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0001$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.05$ {{\mathit{\boldsymbol{e}}}}_y $ 0.19%
      $ A_6 $ $ A^{(1)}_6 $ 0.1$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0$ {{\mathit{\boldsymbol{e}}}}_y $ 0.1003$ {{\mathit{\boldsymbol{e}}}}_{x} $ + 0$ {{\mathit{\boldsymbol{e}}}}_y $ 0.31%
      $ A^{(2)}_6 $ 0.08$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.05$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0796$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.05$ {{\mathit{\boldsymbol{e}}}}_y $ 0.4%
      $ A^{(3)}_6 $ 0.13$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.05$ {{\mathit{\boldsymbol{e}}}}_y $ 0.1301$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.0$ {{\mathit{\boldsymbol{e}}}}_y $ 0.05%
      $ A_7 $ $ A^{(1)}_7 $ –0.08$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.1$ {{\mathit{\boldsymbol{e}}}}_y $ –0.0803$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.1$ {{\mathit{\boldsymbol{e}}}}_y $ 0.4%
      $ A^{(2)}_7 $ –0.07$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.12$ {{\mathit{\boldsymbol{e}}}}_y $ –0.0705$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.12$ {{\mathit{\boldsymbol{e}}}}_y $ 0.38%
      $ A^{(3)}_7 $ –0.12$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ –0.1204$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ 0.21%
      $ A_8 $ $ A^{(1)}_8 $ –0.03$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ –0.0299$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ 0.05%
      $ A^{(2)}_8 $ –0.07$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.2$ {{\mathit{\boldsymbol{e}}}}_y $ –0.07$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.2$ {{\mathit{\boldsymbol{e}}}}_y $ 0
      $ A^{(3)}_8 $ 0$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.2$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0001$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.2$ {{\mathit{\boldsymbol{e}}}}_y $ 0.04%
      $ A_9 $ $ A^{(1)}_9 $ 0.06$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.1$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0599$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.1$ {{\mathit{\boldsymbol{e}}}}_y $ 0.08%
      $ A^{(2)}_9 $ 0.02$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.12$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0203$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.12$ {{\mathit{\boldsymbol{e}}}}_y $ 0.24%
      $ A^{(3)}_9 $ 0.04$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0401$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ 0.02%
      $ A_{10} $ $ A^{(1)}_{10} $ 0.18$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.07$ {{\mathit{\boldsymbol{e}}}}_y $ 0.18$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.0701$ {{\mathit{\boldsymbol{e}}}}_y $ 0.02%
      $ A^{(2)}_{10} $ 0.13$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.12$ {{\mathit{\boldsymbol{e}}}}_y $ 0.1297$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.12$ {{\mathit{\boldsymbol{e}}}}_y $ 0.18%
      $ A^{(3)}_{10} $ 0.15$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ 0.1501$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ 0.07%
      $ A_{11} $ $ A^{(1)}_{11} $ 0.0 $ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0898$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.15$ {{\mathit{\boldsymbol{e}}}}_y $ 0.12%
      $ A^{(2)}_{11} $ 0.06$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.2$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0598$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.25$ {{\mathit{\boldsymbol{e}}}}_y $ 0.07%
      $ A^{(3)}_{11} $ 0.13$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.19$ {{\mathit{\boldsymbol{e}}}}_y $ 0.1302$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.19$ {{\mathit{\boldsymbol{e}}}}_y $ 0.09%
      $ A_{12} $ $ A^{(1)}_{12} $ 0.02$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.2$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0197$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.2$ {{\mathit{\boldsymbol{e}}}}_y $ 0.15%
      $ A^{(2)}_{12} $ 0.03$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.22$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0297$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.22$ {{\mathit{\boldsymbol{e}}}}_y $ 0.16%
      $ A^{(3)}_{12} $ 0.05$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.22$ {{\mathit{\boldsymbol{e}}}}_y $ 0.0501$ {{\mathit{\boldsymbol{e}}}}_{x} $ – 0.22$ {{\mathit{\boldsymbol{e}}}}_y $ 0.02%
      DownLoad: CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

    • [1] Su Bin-Bin, Chen Jian-Jun, Wu Zheng-Mao, Xia Guang-Qiong.Performances of time-delay signature and bandwidth of the chaos generated by a vertical-cavity surface-emitting laser under chaotic optical injection. Acta Physica Sinica, 2017, 66(24): 244206.doi:10.7498/aps.66.244206
      [2] Yang Feng, Tang Xi, Zhong Zhu-Qiang, Xia Guang-Qiong, Wu Zheng-Mao.Generations of multi-channel high-quality chaotic signals based on a ring system composed of polarization rotated coupled 1550 nm vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2016, 65(19): 194207.doi:10.7498/aps.65.194207
      [3] Chen Jun, Chen Jian-Jun, Wu Zheng-Mao, Jiang Bo, Xia Guang-Qiong.Investigations on the polarization switching and bistability in a 1550 nm vertical-cavity surface-emitting laser under variable-polarization optical injection. Acta Physica Sinica, 2016, 65(16): 164204.doi:10.7498/aps.65.164204
      [4] Wang Xiao-Fa, Wu Zheng-Mao, Xia Guang-Qiong.Polarization switching with low power consumption induced by optical feedback in long-wavelength vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2016, 65(2): 024204.doi:10.7498/aps.65.024204
      [5] Sun Bo, Wu Jia-Gui, Wang Shun-Tian, Wu Zheng-Mao, Xia Guang-Qiong.Theoretical and experimental investigation on the narrow-linewidth photonic microwave generation based on parallel polarized optically injected 1550 nm vertical-cavity surface-emitting laser. Acta Physica Sinica, 2016, 65(1): 014207.doi:10.7498/aps.65.014207
      [6] Guan Bao-Lu, Liu Xin, Jiang Xiao-Wei, Liu Chu, Xu Chen.Multi-transverse-mode and wavelength split characteristics of vertical cavity surface emitting laser. Acta Physica Sinica, 2015, 64(16): 164203.doi:10.7498/aps.64.164203
      [7] Liu Qing-Xi, Pan Wei, Zhang Li-Yue, Li Nian-Qiang, Yan Juan.Chaotic randomness of mutually coupled vertical-cavity surface-emitting laser by optical injection. Acta Physica Sinica, 2015, 64(2): 024209.doi:10.7498/aps.64.024209
      [8] Zhong Dong-Zhou, Ji Yong-Qiang, Deng Tao, Zhou Kai-Li.Manipulation of the polarization switching and the nonlinear dynamic behaviors of the vertical-cavity surface-emitting laser subjected to optical injection by EO modulation. Acta Physica Sinica, 2015, 64(11): 114203.doi:10.7498/aps.64.114203
      [9] Zhou Ya, Wu Zheng-Mao, Fan Li, Sun Bo, He Yang, Xia Guang-Qiong.Two channel photonic microwave generation based on period-one oscillations of two orthogonally polarized modes in a vertical-cavity surface-emitting laser subjected to an elliptically polarized optical injection. Acta Physica Sinica, 2015, 64(20): 204203.doi:10.7498/aps.64.204203
      [10] Zhou Zhen-Li, Xia Guang-Qiong, Deng Tao, Zhao Mao-Rong, Wu Zheng-Mao.Multiple polarization switching in mutually coupled vertical-cavity surface emitting lasers. Acta Physica Sinica, 2015, 64(2): 024208.doi:10.7498/aps.64.024208
      [11] Wang Xiao-Fa, Li Jun.Dynamic characteristics of 1550 nm vertical-cavity surface-emitting laser subject to polarization-rotated optical feedback:the short cavity regime. Acta Physica Sinica, 2014, 63(1): 014203.doi:10.7498/aps.63.014203
      [12] Deng Wei, Xia Guang-Qiong, Wu Zheng-Mao.Dual-channel chaos synchronization and communication based on a vertical-cavity surface emitting laser with double optical feedback. Acta Physica Sinica, 2013, 62(16): 164209.doi:10.7498/aps.62.164209
      [13] Wang Xiao-Fa.Polarization switching dynamics of vertical-cavity surface-emitting laser subject to negative optoelectronic feedback. Acta Physica Sinica, 2013, 62(10): 104208.doi:10.7498/aps.62.104208
      [14] Zheng An-Jie, Wu Zheng-Mao, Deng Tao, Li Xiao-Jian, Xia Guang-Qiong.Nonlinear dynamics of 1550 nm vertical-cavity surface-emitting laser with polarization- preserved optical feedback. Acta Physica Sinica, 2012, 61(23): 234203.doi:10.7498/aps.61.234203
      [15] Li Shuo, Guan Bao-Lu, Shi Guo-Zhu, Guo Xia.Polarization stable vertical-cavity surface-emitting laser with surface sub-wavelength gratings. Acta Physica Sinica, 2012, 61(18): 184208.doi:10.7498/aps.61.184208
      [16] Zhong Dong-Zhou, Wu Zheng-Mao.Manipulation of the vector chaotic polarization of VCSEL output with external optical feedback by electro-optic modulation. Acta Physica Sinica, 2012, 61(3): 034203.doi:10.7498/aps.61.034203
      [17] Huang Xue-Bing, Xia Guang-Qiong, Wu Zheng-Mao.Polarization bistability characteristics of vertical-cavity surface-emitting lasers with negative optoelectronic feedback subject to time-varying current. Acta Physica Sinica, 2010, 59(5): 3066-3069.doi:10.7498/aps.59.3066
      [18] Wang Xiao-Fa, Xia Guang-Qiong, Wu Zheng-Mao.Chaotic synchronization performances of two unidirectionally coupled VCSELs subject to negative optoelectronic feedback. Acta Physica Sinica, 2009, 58(7): 4669-4674.doi:10.7498/aps.58.4669
      [19] Zhong Dong-Zhou, Cao Wen-Hua, Wu Zheng-Mao, Xia Guang-Qiong.Vector polarization mode switch mechanism of the vertical-cavity surface-emitting laser with anisotropic optical feedback injection. Acta Physica Sinica, 2008, 57(3): 1548-1556.doi:10.7498/aps.57.1548
      [20] Zhong Dong-Zhou, Xia Guang-Qiong, Wang Fei, Wu Zheng-Mao.Vectorial chaotic synchronization characteristics of unidrectionally coupled and injected vertical-cavity surface-emitting lasers based on optical feedback. Acta Physica Sinica, 2007, 56(6): 3279-3291.doi:10.7498/aps.56.3279
    Metrics
    • Abstract views:5044
    • PDF Downloads:96
    • Cited By:0
    Publishing process
    • Received Date:13 October 2020
    • Accepted Date:06 November 2020
    • Available Online:19 March 2021
    • Published Online:05 April 2021

      返回文章
      返回
        Baidu
        map