Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Zhang Jian, Wang Xin-Qiao, Su Tong, Chen Ying, Guo Yong-Quan
    PDF
    HTML
    Get Citation
    • The valence electron structures and thermal and electric properties of Na||Sb-Pb-Sn liquid metal battery are systematically studies with solid and molecular empirical electron theory (EET). The theoretical studies show that the thermal and electric properties are strongly related to the valence electron structure of electrode. The cathodic alloys Na 1– xIA x(IA = K, Rb, Cs) are designed by doping IA group alkali metals (K, Rb, Cs) into Na electrode since the melting points of IA group metals (K, Rb, Cs) are all lower than that of sodium. The theoretical bond lengths and cohesive energy of cathodic alloys Na 1– xIA xmatch the experimental ones well. The theoretical studies show the decreasing tendency of melting point, cohesive energy and electric potential with increasing doping content xin Na 1– xIA xalloys, which is due to the modulation of valence electron structure of IA group dopants. According to the analyses of valence structures, the number of lattice electrons decreases with the increasing of the doping content xfor the cathodic alloy and causes the melting point, electric potential and cohesive energy to decline. It reveals that the IA group dopant modulates the valence electron structure of cathodic alloy, and induces the electron transformation from lattice electron to covalent electron in s orbital. The anode products such as NaSb 3, NaSn, Na 15Sn 4and NaPb are formed by transporting Na ions into the anode alloy Sb-Sn-Pb. The calculated bond-lengths and melting points fit the observed ones well for these anode products. Owing to their complex structures with various atomic occupations in unit cell, the thermal property or electric property is not only relative to lattice electron, but also depends on the covalent electron. The sublattice plays an important role in the forming of the four anode products. The lattice electrons are supplied by Na at 4 fsites in Na 3Sb, Na at 16 eand Sn at 32 gsites in NaSn, Sn at 16 cand Na at 48 esites in Na 15Sn 4, and Na at 16 fand Pb at 32 gsites in NaPb, respectively. The open-gate voltage is closely related to the lattice electrons and inversely proportional to the average number of lattice electrons per atom. The open-gate voltage of NaSb 3is the largest among the anode products, however, its averaged number of lattice electron per atom is the least. Since the lattice electron number of NaSn is the largest among the anode products, the open-gate voltage of NaSn is the least. It implies that the lattice electron plays a very important role in Na||Sb-Pb-Sn liquid metal battery, which can modulate the valence electron structures and thermal and electric properties.
          Corresponding author:Guo Yong-Quan,yqguo@ncepu.edu.cn
        • Funds:Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0905600)
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

      • Na1–xIAx $ {I}_{\alpha } $ $ {D}_{\mathrm{uv}}\left({n}_{\alpha }\right) $/Å ${\bar{D}}_{\mathrm{uv}}\left({n}_{\alpha }\right) $/Å $ {n}_{\rm{A}}$ $ { I}_{\alpha } $ $ {D}_{\mathrm{uv}}\left({n}_{\alpha }\right) $/${ \text{Å} }$ ${\bar{D} }_{\mathrm{uv} }\left({n}_{\alpha }\right)/{ \text{Å} }$ $ {n}_{\alpha } $ |∆D|/${\text{Å} }$
        Na 8 3.7296 3.7502 0.05160 6 4.3004 4.3210 0.00810 0.0206
        Na0.99K0.01 8 3.7381 3.7538 0.05220 6 4.3103 4.3260 0.00820 0.0157
        Na0.99Rb0.01 8 3.7430 3.7572 0.05220 6 4.3157 4.3300 0.00820 0.0143
        Na0.99Cs0.01 8 3.7454 3.7628 0.05220 6 4.3187 4.3361 0.00810 0.0175
        Na0.98K0.02 8 3.7465 3.7574 0.05290 6 4.3202 4.3310 0.00823 0.0108
        Na0.98Rb0.02 8 3.7564 3.7643 0.05290 6 4.3310 4.3389 0.00820 0.0079
        Na0.98Cs0.02 8 3.7611 3.7755 0.05290 6 4.3370 4.3513 0.00817 0.0143
        Na0.97K0.03 8 3.7550 3.7610 0.05348 6 4.3301 4.3361 0.00829 0.0060
        Na0.97Rb0.03 8 3.7697 3.7713 0.05351 6 4.3463 4.3479 0.00825 0.0016
        Na0.97Cs0.03 8 3.7769 3.7881 0.05354 6 4.3552 4.3665 0.00821 0.0113
        Na0.96K0.04 8 3.7635 3.7647 0.05411 6 4.3399 4.3411 0.00834 0.0012
        Na0.96Rb0.04 8 3.7831 3.7785 0.05415 6 4.3616 4.3570 0.00829 0.0047
        Na0.96Cs0.04 8 3.7926 3.8009 0.05419 6 4.3735 4.3818 0.00824 0.0082
        Na0.95K0.05 8 3.7719 3.7684 0.05474 6 4.3498 4.3463 0.00840 0.0036
        Na0.95Rb0.05 8 3.7965 3.7856 0.05479 6 4.3769 4.3661 0.00834 0.0109
        Na0.95Cs0.05 8 3.8084 3.8136 0.05484 6 4.3918 4.3971 0.00827 0.0052
        DownLoad: CSV

        Na1–xIAx nc ns np nl R(1)
        Na 0.4614 0.4606 0.0008 0.5386 1.4181
        Na0.99K0.01 0.4668 0.4660 0.0008 0.5332 1.4217
        Na0.98K0.02 0.4722 0.4713 0.0008 0.5278 1.4254
        Na0.97K0.03 0.4776 0.4767 0.0009 0.5224 1.4290
        Na0.96K0.04 0.4830 0.4821 0.0009 0.5170 1.4327
        Na0.95K0.05 0.4884 0.4875 0.0009 0.5116 1.4363
        Na0.99Rb0.01 0.4668 0.4660 0.0008 0.5332 1.4235
        Na0.98Rb0.02 0.4722 0.4713 0.0008 0.5278 1.4289
        Na0.97Rb0.03 0.4776 0.4767 0.0009 0.5224 1.4343
        Na0.96Rb0.04 0.4830 0.4821 0.0009 0.5170 1.4397
        Na0.95Rb0.05 0.4884 0.4875 0.0009 0.5116 1.4451
        Na0.99Cs0.01 0.4668 0.4660 0.0008 0.5332 1.4263
        Na0.98Cs0.02 0.4722 0.4713 0.0008 0.5278 1.4345
        Na0.97Cs0.03 0.4776 0.4767 0.0009 0.5224 1.4428
        Na0.96Cs0.04 0.4830 0.4821 0.0009 0.5170 1.4510
        Na0.95Cs0.05 0.4884 0.4875 0.0009 0.5116 1.4592
        DownLoad: CSV

        掺杂量x 原子 杂阶 掺杂 杂阶 $ \bar{T}_{\rm{m}} $/K $ {E}_{\mathrm{c}} $/(eV·atom–1) $ {\bar{E}}_{\mathrm{c}} $/(eV·atom–1) $\left| { {\Delta E}_{\mathrm{c} } }/{ {E}_{\mathrm{c} } }\right|/{\%}$ 电势/V
        0 Na 3 336.76 1.113 1.165 4.67 0.1482
        0.01 Na 2 K 4 336.64 1.111 1.164 4.77 0.1481
        0.01 Na 2 Rb 4 336.45 1.110 1.163 4.77 0.1480
        0.01 Na 2 Cs 4 336.02 1.103 1.161 5.26 0.1478
        0.02 Na 2 K 4 336.64 1.109 1.163 4.39 0.1481
        0.02 Na 2 Rb 4 336.14 1.108 1.161 4.78 0.1478
        0.02 Na 2 Cs 4 335.29 1.110 1.158 4.32 0.1475
        0.03 Na 2 K 4 336.60 1.103 1.162 5.35 0.1480
        0.03 Na 2 Rb 4 335.85 1.109 1.159 4.51 0.1476
        0.03 Na 2 Cs 4 334.58 1.108 1.154 4.15 0.1471
        0.04 Na 2 K 4 336.57 1.107 1.162 4.97 0.1479
        0.04 Na 2 Rb 4 335.57 1.103 1.157 4.90 0.1474
        0.04 Na 2 Cs 4 333.88 1.109 1.151 3.79 0.1467
        0.05 Na 2 K 4 336.55 1.108 1.161 4.78 0.1478
        0.05 Na 2 Rb 4 335.30 1.107 1.156 4.43 0.1472
        0.05 Na 2 Cs 4 333.20 1.108 1.147 3.52 0.1463
        DownLoad: CSV

        合金 空间群 a/$\text{Å}$ b/$\text{Å}$ c/$\text{Å}$ 原子 占位 x y z
        Sb 2c 0.3333 0.6666 0.2500
        Na3Sb P63mmc(194) 5.355 5.355 9.496 Na1 2b 0 0 0.2500
        Na2 4f 0.3333 0.6666 0.5830
        NaSn I41/acd(142) 10.460 10.460 17.390 Sn 32g 0.0696 0.1260 0.9362
        Na1 16f 0.6258 0.8758 0.1250
        Na2 16e 0.8724 0 0.2500
        Sn 16c 0.2083 0.2083 0.2083
        Na15Sn4 I43d(220) 13.140 13.140 13.140 Na1 12a 0.3750 0 0.2500
        Na2 48e 0.1270 0.1548 0.9670
        Pb 32g 0.0696 0.1186 0.9383
        NaPb I41/acd(142) 10.580 10.580 17.746 Na1 16e 0.2500 0.1250 0.5000
        Na2 16f 0.1250 0.3750 0.6250
        DownLoad: CSV

        合金 键序 成键原子 $ {I}_{\alpha } $ $ {D}_{\mathrm{uv}}\left({n}_{\alpha }\right) $/$\text{Å}$ $ {\bar{D}}_{\mathrm{uv}}\left({n}_{\alpha }\right)/$$\text{Å}$ $ {n}_{\alpha } $ |ΔD|/$\text{Å}$
        Na3Sb 1 Sb-Na2 6 3.0975 3.0910 0.39055 0.0065
        2 Sb-Na1 4 3.1685 3.1620 0.19416 0.0065
        3 Na1-Na2 4 3.1780 3.1715 0.18030 0.0065
        4 Na1-Na1 6 3.4769 3.4704 0.03738 0.0065
        5 Sb-Na1 12 3.4813 3.4748 0.05846 0.0065
        6 Na2-Na1 12 3.4813 3.4748 0.05630 0.0065
        7 Na2-Na1 12 4.4310 4.4245 0.00147 0.0065
        8 Na2-Na2 2 4.7575 4.7510 0.00064 0.0065
        NaSn 1 Sn-Sn 2 2.9748 3.0201 0.42650 0.0453
        2 Sn-Sn 4 2.9925 3.0378 0.39849 0.0453
        3 Na1-Sn 4 3.3355 3.3808 0.07506 0.0453
        4 Na1-Sn 4 3.3592 3.4045 0.06854 0.0453
        5 Na2-Sn 4 3.3974 3.4427 0.13064 0.0453
        6 Na2-Sn 4 3.4231 3.4684 0.11837 0.0453
        7 Na1-Sn 4 3.4870 3.5323 0.04197 0.0453
        8 Na2-Sn 2 3.5225 3.5678 0.08083 0.0453
        9 Na2-Sn 4 3.5482 3.5935 0.07324 0.0453
        10 Na1-Na2 4 3.6148 3.6601 0.03985 0.0453
        11 Na1-Na2 4 3.6658 3.7111 0.03277 0.0453
        12 Na1-Na1 1 3.7218 3.7671 0.01197 0.0453
        13 Sn-Sn 2 3.7406 3.7859 0.02257 0.0453
        14 Sn-Sn 2 4.3780 4.4233 0.00196 0.0453
        15 Na1-Na2 4 4.4919 4.5372 0.00138 0.0453
        16 Na1-Sn 4 4.6674 4.7127 0.00045 0.0453
        17 Na2-Na2 1 4.7095 4.7548 0.00132 0.0453
        Na15Sn4 1 Sn-Na2 24 3.2378 3.2854 0.20850 0.0476
        2 Na2-Na2 24 3.2624 3.3100 0.19499 0.0476
        3 Na1-Na2 24 3.3425 3.3901 0.11017 0.0476
        4 Na2-Na2 12 3.3468 3.3944 0.14830 0.0476
        5 Sn-Na2 24 3.4049 3.4525 0.12127 0.0476
        6 Sn-Na2 24 3.4189 3.4665 0.11589 0.0476
        7 Na1-Na2 24 3.5026 3.5502 0.06555 0.0476
        8 Sn-Na1 24 3.5482 3.5958 0.05582 0.0476
        9 Na2-Na2 24 3.8138 3.8614 0.03261 0.047
        10 Na2-Na2 24 3.9794 4.0270 0.01906 0.0476
        11 Na2-Na2 12 4.1712 4.2188 0.01023 0.0476
        NaPb 1 Pb-Pb 2 3.1464 3.1452 0.33477 0.0013
        2 Pb-Pb 4 3.1618 3.1606 0.31556 0.0013
        3 Pb-Na2 4 3.3653 3.3641 0.19895 0.0013
        4 Pb-Na1 4 3.3888 3.3876 0.08237 0.0013
        5 Pb-Na2 4 3.4215 3.4203 0.16035 0.0013
        6 Pb-Na2 4 3.4847 3.4835 0.12582 0.0013
        7 Pb-Na1 4 3.4929 3.4917 0.05524 0.0013
        8 Pb-Na1 4 3.5549 3.5537 0.04354 0.0013
        9 Pb-Na1 4 3.6172 3.6160 0.03428 0.0013
        10 Pb-Pb 2 3.6418 3.6406 0.05001 0.0013
        11 Na1-Na2 8 3.6967 3.6955 0.03479 0.0013
        12 Na2-Na2 1 3.7406 3.7394 0.06488 0.0013
        13 Pb-Pb 2 4.4008 4.3996 0.00272 0.0013
        14 Na1-Na2 4 4.5455 4.5443 0.00134 0.0013
        15 Pb-Na2 4 4.7513 4.7501 0.00097 0.0013
        DownLoad: CSV

        合金 原子 杂阶 nc ns np nl R(1)
        Na3Sb Sb 2 3.0000 0.5694 2.4306 0 1.4279
        Na1 4 1.0000 0.9982 0.0018 0 1.3070
        Na2 2 0.4614 0.4606 0.0008 0.5386 1.4181
        NaSn Sn 1 2.0000 0 2.0000 2.0000 1.3990
        Na1 1 1.0000 0.9982 0.0018 0 1.3070
        Na2 4 0 0 0 1.0000 1.5133
        Na15Sn4 Sn 4 3.6638 0.8319 2.8319 0.3362 1.3990
        Na1 4 1.0000 0.9982 0.0018 0 1.3070
        Na2 3 0.5350 0.5340 0.0010 0.4650 1.4029
        NaPb Pb 2 2.0962 0.0481 2.0481 1.9038 1.4300
        Na1 4 1.0000 0.9982 0.0018 0 1.3070
        Na2 1 0 0 0 1.0000 1.5133
        DownLoad: CSV

        合金 Tm/K[35] $ \bar{T}_{\rm{m}} $/K |${\Delta {T}_{\mathrm{m} } }/{ {T}_{\mathrm{m} } }$|/% 电势/V n β Ec/(eV·atom–1)
        Na3Sb 1129 1142.96 1.2 1.1520 4 0.60 1.766
        NaSn 851 813.16 4.4 0.7343 5 0.60 2.103
        Na15Sn4 681 746.16 9.6 0.9074 3 0.71 1.318
        NaPb 645 630.68 2.2 0.8263 6 0.60 1.559
        DownLoad: CSV

        Na1–xIAx 开路电压/V
        Na3Sb NaSn Na15Sn4 NaPb
        Na 1.0038 0.5861 0.7592 0.6781
        Na0.09K0.01 1.0039 0.5862 0.7593 0.6782
        Na0.98K0.02 1.0039 0.5862 0.7593 0.6782
        Na0.97K0.03 1.0040 0.5863 0.7594 0.6783
        Na0.96K0.04 1.0041 0.5864 0.7595 0.6784
        Na0.95K0.05 1.0042 0.5865 0.7596 0.6785
        Na0.99Rb0.01 1.0040 0.5863 0.7594 0.6783
        Na0.98Rb0.02 1.0042 0.5865 0.7596 0.6785
        Na0.97Rb0.03 1.0044 0.5867 0.7598 0.6787
        Na0.96Rb0.04 1.0046 0.5869 0.7600 0.6789
        Na0.95Rb0.05 1.0048 0.5871 0.7602 0.6791
        Na0.99Cs0.01 1.0042 0.5865 0.7596 0.6785
        Na0.98Cs0.02 1.0045 0.5868 0.7599 0.6788
        Na0.97Cs0.03 1.0049 0.5872 0.7603 0.6792
        Na0.96Cs0.04 1.0053 0.5876 0.7607 0.6796
        Na0.95Cs0.05 1.0057 0.5880 0.7611 0.6800
        nl/atom 0.2693 1.2500 0.3645 1.0682
        DownLoad: CSV

        σ 1 2 3 4
        Chσ 1 0.5386 0.4650 0
        Ctσ 0 0.4616 0.5350 1
        nTσ 1 1 1 1
        nlσ 1 0.5386 0.4650 0
        ncσ 0 0.4616 0.5350 1
        Rσ(1) H 0.3708 0.3289 0.3222 0.2800
        Li 1.3260 1.2089 1.1440 0.9860
        Na 1.5133 1.4551 1.4308 1.3070
        K 1.9628 1.8794 1.8601 1.7820
        Rb 2.0870 2.0270 2.0175 1.9570
        Cs 2.2140 2.2260 2.2279 2.2400
        注: $ l, \; m, \;n, \; \tau $: 1 0 0 0
          $l{'}, \; m{'}, \;n{'}, \; \tau {'}$: 0.9982 0.0018 0 0
        DownLoad: CSV

        σ 1 2 3 4
        Chσ 1 0.5694 0.1983 0
        Ctσ 0 0.4306 0.8017 1
        nTσ 3 or 5 3 or 5 3 or 5 3 or 5
        nlσ 0 0 0 0
        ncσ 3 or 5 3 or 5 3 or 5 3 or 5
        Rσ(1) N 0.7000 0.7517 0.7973 0.8200
        P 1.0980 1.1173 1.1343 1.1428
        As 1.1800 1.2390 1.2911 1.3170
        Sb 1.3560 1.4279 1.4919 1.5230
        Bi 1.3990 1.4455 1.5044 1.5290
        注: $ l, \; m, \; n, \; \tau $: 1 2 0 1; $ l{'}, \; m{'}, \; n{'}, \; \tau {'} $: 0 3 0 1
        DownLoad: CSV

        σ 1 2 3 4 5 6
        Chσ 1 0.9502 0.8320 0.1681 0.0481 0
        Ctσ 0 0.0498 0.1680 0.8319 0.9519 1
        nTσ 4 4 4 4 4 4
        nlσ 2 1.9040 1.6640 0.3360 0.0960 0
        ncσ 2 2.0960 2.3360 3.6640 3.9040 4
        Rσ(1) C 0.7630 0.7630 0.7630 0.7630 0.7630 0.7630
        Si 1.1700 1.1700 1.1700 1.1700 1.1700 1.1700
        Ge 1.2230 1.2230 1.2230 1.2230 1.2230 1.2230
        Sn 1.3990 1.3990 1.3990 1.3990 1.3990 1.3990
        Pb 1.4300 1.4300 1.4300 1.4300 1.4300 1.4300
        注: $ l, \; m, \; n, \; \tau $; 2 2 0 0; $ l{'}, \; m{'}, \; n{'}, \; \tau {'}; $ 1 3 0 1
        DownLoad: CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

      • [1] Zhu Xiao-Li, Qiu Peng, Wei Hui-Yun, He Ying-Feng, Liu Heng, Tian Feng, Qiu Hong-Yu, Du Meng-Chao, Peng Ming-Zeng, Zheng Xin-He.Theoretical analysis of GaN-based semiconductor in changing performanc of perovskite solar cell. Acta Physica Sinica, 2023, 72(10): 107702.doi:10.7498/aps.72.20230100
        [2] Tang Gui-De, Li Zhuang-Zhi, Ma Li, Wu Guang-Heng, Hu Feng-Xia.Opportunity and challenge for study of valence electron structure in typical magnetic materials. Acta Physica Sinica, 2020, 69(2): 027501.doi:10.7498/aps.69.20191655
        [3] Zhou Qing-Zhong, Guo Feng, Zhang Ming-Rui, You Qing-Liang, Xiao Biao, Liu Ji-Yan, Liu Cui, Liu Xue-Qing, Wang Liang.Impact of charge carrier recombination and energy disorder on the open-circuit voltage of polymer solar cells. Acta Physica Sinica, 2020, 69(4): 046101.doi:10.7498/aps.69.20191699
        [4] Qi Wei-Hua, Ma Li, Li Zhuang-Zhi, Tang Gui-De, Wu Guang-Heng.Dependences of valence electronic structure on magnetic moment and electrical resistivity of metals. Acta Physica Sinica, 2017, 66(2): 027101.doi:10.7498/aps.66.027101
        [5] Liu Fang-Fang, He Qing, Zhou Zhi-Qiang, Sun Yun.Effects of Cu elements on Cu(In,Ga)Se2 film and solar cell. Acta Physica Sinica, 2014, 63(6): 067203.doi:10.7498/aps.63.067203
        [6] Wang Yun-Fei, Li Yun-Kai, Sun Chuan, Zhu Ling-Bo, Miao Yong, Chen Xue-Bing.Electronic theoretical model of static and dynamic strength of steels. Acta Physica Sinica, 2014, 63(12): 126101.doi:10.7498/aps.63.126101
        [7] Liu Bo-Fei, Bai Li-Sha, Wei Chang-Chun, Sun Jian, Hou Guo-Fu, Zhao Ying, Zhang Xiao-Dan.Modification to the performance of hydrogenated amorphous silicon germanium thin film solar cell. Acta Physica Sinica, 2013, 62(20): 208801.doi:10.7498/aps.62.208801
        [8] Meng Zhen-Hua, Li Jun-Bin, Guo Yong-Quan, Wang Yi.Correlations between the valence electron structure and melt pointing and cohesive energies of rare earth metals. Acta Physica Sinica, 2012, 61(10): 107101.doi:10.7498/aps.61.107101
        [9] Xiao Wen-Bo, He Xing-Dao, Gao Yi-Qing.Experimental investigation on open-circuit voltage of InGaP/InGaAs/Ge triple-junction solar cell influenced by the vibration direction of the electric vector of linearly polarized light. Acta Physica Sinica, 2012, 61(10): 108802.doi:10.7498/aps.61.108802
        [10] Wang Xin-Hua, Zhao Miao, Liu Xin-Yu, Pu Yan, Zheng Ying-Kui, Wei Ke.The experiential fit of the capacitance-voltage characteristicsof the AlGaN/AlN/GaN high electron mobility transistors. Acta Physica Sinica, 2011, 60(4): 047101.doi:10.7498/aps.60.047101
        [11] Li Rong-Hua, Meng Wei-Min, Peng Ying-Quan, Ma Chao-Zhu, Wang Run-Sheng, Xie Hong-Wei, Wang Ying, Ye Zao-Chen.Investigation on the effect of cathode work function and exciton generation rate on the open-circuit voltage of single layer organic solar cell with Schottky contact. Acta Physica Sinica, 2010, 59(3): 2126-2130.doi:10.7498/aps.59.2126
        [12] Wu Wen-Xia, Guo Yong-Quan, Li An-Hua, Li Wei.Analysis of valence electron structures and calculation of magnetic properties of Nd2Fe14B. Acta Physica Sinica, 2008, 57(4): 2486-2492.doi:10.7498/aps.57.2486
        [13] Hu Kun-Ming, Wang Jian-Bo.A new Young tableau method of obtaining equivalent-electron Young basis. Acta Physica Sinica, 2007, 56(3): 1253-1259.doi:10.7498/aps.56.1253
        [14] Hu Kun-Ming.Discussion on the transformation property between the configuration wavefunction of the equivalent-electron and the Young tableau. Acta Physica Sinica, 2005, 54(10): 4524-4525.doi:10.7498/aps.54.4524
        [15] Lu Yun-Hao, Duan Xiao-Bang, Lü Ping, Zhang Han-Jie, Li Hai-Yang, Bao Shi-Ning, He Pi-Mo.UPS study of tri(β-naphthyl) phosphine overlayer on Ag(110). Acta Physica Sinica, 2005, 54(9): 4319-4323.doi:10.7498/aps.54.4319
        [16] Lv Bin, Lv Ping, Shi Shen-Lei, Zhang Jian-Hua, Tang Jian-Xin, Lou Hui, He Pi-Mo, Bao Shi-Ning.. Acta Physica Sinica, 2002, 51(11): 2644-2648.doi:10.7498/aps.51.2644
        [17] XU ZHI-ZHONG.THE VALENCE BAND STRUCTURES AND OPTICAL PROPERTIES OF STRAINED GaAs LAYERS GROWN ON THE GexSi1-x(001) SUBSTRATES. Acta Physica Sinica, 1996, 45(1): 126-132.doi:10.7498/aps.45.126
        [18] LIU RANG-SU, LI JI-YONG.. Acta Physica Sinica, 1995, 44(10): 1582-1587.doi:10.7498/aps.44.1582
        [19] CHEN KUI-YING, LI QING-CHUN, CHEN XI-CHEN.STRUCTURES AND MICRODYNAMIC BEHAVIOR OF LIQUID TRANSITION METAL Pd AND Pt. Acta Physica Sinica, 1993, 42(2): 283-289.doi:10.7498/aps.42.283
        [20] CHEN KUI-YING, LI QING-CHUN.LOCAL STRUCTURE AND BOND ORIENTATION ORDER OF LIQUID NOBLE METAL Au AND Ag. Acta Physica Sinica, 1992, 41(11): 1813-1819.doi:10.7498/aps.41.1813
      Metrics
      • Abstract views:5797
      • PDF Downloads:68
      • Cited By:0
      Publishing process
      • Received Date:30 September 2020
      • Accepted Date:01 December 2020
      • Available Online:02 April 2021
      • Published Online:20 April 2021

        返回文章
        返回
          Baidu
          map