Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

Li Yu, Sheng Yu-Tao, Yang Yi-Feng
PDF
HTML
Get Citation
  • Heavy fermion superconductors belong to a special class of strongly correlated systems and unconventional superconductors. The emergence of superconductivity in these materials is closely associated with the presence of quantum critical fluctuations. Heavy fermion superconductors of different structures often exhibit distinct competing orders and superconducting phase diagrams, implying sensitive dependence of their electronic structures and pairing mechanism on the crystal symmetry. Here we give a brief introduction on recent theoretical and experimental progress in several different material families. We develop a new phenomenological framework of superconductivity combining the Eliashberg theory, a phenomenological form of quantum critical fluctuations, and strongly correlated band structure calculations for real materials. Our theory provides a unified way for systematic understanding of various heavy fermion superconductors.
        Corresponding author:Yang Yi-Feng,yifeng@iphy.ac.cn
      • Funds:Project supported by the National Basic Research Program of China (Grant No. 2017YFA0303103), the National Natural Science Foundation of China (Grant Nos. 11774401, 11974397), the Strategic Priority Research Program of Chinese Academy of Sciences, China (Grant No. XDB33010100), and the China Postdoctoral Science Foundation (Grant No. 2020M670422)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

      [181]

      [182]

      [183]

      [184]

      [185]

      [186]

      [187]

      [188]

      [189]

      [190]

      [191]

      [192]

      [193]

      [194]

      [195]

      [196]

      [197]

      [198]

      [199]

      [200]

      [201]

      [202]

      [203]

      [204]

      [205]

      [206]

      [207]

      [208]

      [209]

      [210]

      [211]

      [212]

      [213]

      [214]

      [215]

      [216]

      [217]

      [218]

      [219]

      [220]

      [221]

      [222]

      [223]

      [224]

      [225]

      [226]

      [227]

      [228]

      [229]

      [230]

      [231]

      [232]

      [233]

      [234]

      [235]

      [236]

      [237]

      [238]

      [239]

      [240]

      [241]

      [242]

      [243]

      [244]

      [245]

      [246]

      [247]

      [248]

      [249]

      [250]

      [251]

      [252]

      [253]

      [254]

      [255]

      [256]

      [257]

      [258]

      [259]

      [260]

      [261]

      [262]

      [263]

      [264]

      [265]

      [266]

      [267]

      [268]

      [269]

      [270]

      [271]

      [272]

      [273]

      [274]

      [275]

      [276]

      [277]

      [278]

      [279]

      [280]

      [281]

      [282]

      [283]

      [284]

      [285]

      [286]

      [287]

      [288]

      [289]

      [290]

      [291]

      [292]

      [293]

      [294]

      [295]

      [296]

      [297]

      [298]

      [299]

      [300]

      [301]

      [302]

      [303]

      [304]

      [305]

      [306]

      [307]

      [308]

      [309]

      [310]

      [311]

      [312]

      [313]

      [314]

      [315]

      [316]

      [317]

      [318]

      [319]

      [320]

      [321]

      [322]

      [323]

      [324]

      [325]

      [326]

      [327]

      [328]

      [329]

      [330]

      [331]

      [332]

      [333]

      [334]

      [335]

      [336]

      [337]

      [338]

      [339]

      [340]

      [341]

      [342]

      [343]

      [344]

      [345]

      [346]

      [347]

      [348]

      [349]

      [350]

    • 类别 材料 晶系(空间群) $ T_{\rm{c}} $/K $ \gamma $/mJ·mol–1·K2 节点 特殊性质
      Ce基 CeCu2Si2 四方($ I4/mmm $) 0.7 1000 超导与SDW相分离; 加压诱导第二个超导
      CeCu2Ge2 四方($ I4/mmm $) 0.64 (10.1 GPa) 200 反铁磁竞争序; 加压诱导第二个超导
      CePd2Si2 四方($ I4/mmm $) 0.43 (3 GPa) 65 反铁磁竞争序
      CeRh2Si2 四方($ I4/mmm $) 0.42 (1.06 GPa) 23 反铁磁竞争序
      CeAg2Si2[61] 四方($ I4/mmm $) 1.25 (16 GPa) 反铁磁竞争序
      CeAu2Si2 四方($ I4/mmm $) 2.5 (22.5 GPa) 反铁磁竞争序
      CeNi2Ge2 四方($ I4/mmm $) 0.3 350 非费米液体正常态
      CeIn3 立方($ Pm3 m $) 0.23 (2.45 GPa) 140 线 反铁磁竞争序
      CeIrIn5 四方($ P4/mmm $) 0.4 750 线 非费米液体正常态
      CeCoIn5 四方($ P4/mmm $) 2.3 250 线 自旋单态配对; 强磁场诱导Q相
      CeRhIn5 四方($ P4/mmm $) 2.4 (2.3 GPa) 430 压力和磁场诱导费米面突变; 强磁场诱导向列序
      CePt2In7 四方($ I4/mmm $) 2.3 (3.1 GPa) 340 反铁磁竞争序
      Ce2RhIn8 四方($ P4/mmm $) 2.0 (2.3 GPa) 400 反铁磁竞争序
      Ce2PdIn8 四方($ P4/mmm $) 0.68 550 线 非费米液体正常态
      Ce2CoIn8 四方($ P4/mmm $) 0.4 500 非费米液体正常态
      Ce3PdIn11 四方($ P4/mmm $) 0.42 290 两个反铁磁序
      CePt3Si 四方($ P4 mm $) 0.75 390 线 反铁磁竞争序; 破缺中心反演; 混合宇称配对?
      CeIrSi3 四方($ I4 mm $) 1.65 (2.5 GPa) 120 反铁磁竞争序; 破缺中心反演; 混合宇称配对?
      CeRhSi3 四方($ I4 mm $) 1.0 (2.6 GPa) 120 反铁磁竞争序; 破缺中心反演; 混合宇称配对?
      CeCoGe3 四方($ I4 mm $) 0.69 (6.5 GPa) 32 反铁磁竞争序; 破缺中心反演; 混合宇称配对?
      CeRhGe3[62] 四方($ I4 mm $) 1.3 (21.5 GPa) 反铁磁竞争序; 破缺中心反演; 混合宇称配对?
      CeIrGe3 四方($ I4 mm $) 1.6 (24 GPa) 80 反铁磁竞争序; 破缺中心反演; 混合宇称配对?
      CeNiGe3 正交($ Cmmm $) 0.43 (6.8 GPa) 45 反铁磁竞争序; 加压诱导第二个超导
      Ce2Rh3Ge5 正交($ Ibam $) 0.26 (4.0 GPa) 90 反铁磁竞争序
      CePd5Al2 四方($ I4/mmm $) 0.57 (10.8 GPa) 56 反铁磁竞争序
      Yb基 YbRh2Si2 四方($ I4/mmm $) 0.002 磁场诱导非常规量子临界点
      β-YbAlB4 正交($ Cmmm $) 0.08 150 $ T/B $标度行为; 磁场诱导拓扑金属正常态?
      U基 UGe2 正交($ Cmmm $) 0.8 (1.2 GPa) 34 线 铁磁竞争序; 等自旋三重态配对; 超导态破缺时间反演对称性
      UTe2[63,64] 正交 ($ Immm $) 1.6 110 铁磁涨落; 自旋三重态配对; 磁场诱导
      多个超导相
      URhGe 正交 ($ Pnma $) 0.25 163 铁磁竞争序; 等自旋三重态配对; 磁场
      诱导两个超导相
      UCoGe 正交 ($ Pnma $) 0.8 57 点? 线? 等自旋三重态配对; 铁磁竞争序; 磁场
      诱导两个超导相
      UIr 单斜 ($ P2_1 $) 0.15 (2.6 GPa) 49 多个铁磁相; 破缺中心反演; 混合宇称配对?
      U2PtC2 四方($ I4/mmm $) 1.47 150 无磁有序; 自旋三重态配对; 铁磁涨落
      UPd2Al3 六方($ P6/mmm $) 2.0 200 线 反铁磁竞争序; 自旋单态配对;
      磁场调制FFLO?
      UNi2Al3 六方($ P6/mmm $) 1.1 120 反铁磁竞争序; 自旋三重态配对; 超导
      与反铁磁共存
      UBe13 立方($ Fm\bar{3}c $) 0.95 1000 非费米液体正常态; 自旋三重态配对;
      Th掺杂诱导多个超导相
      UPt3 六方($ P6_3/mmc $) 0.530, 0.480 440 线+点 自旋三重态配对; 多个超导相; 低温超
      导破缺时间反演对称性
      U6Fe 四方($ I4/mcm $) 3.8 157 电荷密度波竞争序; 磁场调制FFLO?
      URu2Si2 四方($ I4/mmm $) 1.53 70 线 隐藏序正常态; 自旋单态配对; 破缺
      时间反演对称性
      Pr基 PrOs4Sb12 立方($ Im\bar3 $) 1.82, 1.74 500 点? 无? 磁场诱导反铁电四极矩序; 两个超导相; 低温超导破缺时间反演对称性
      PrIr2Zn20 立方($ Fd\bar3 m $) 0.05 反铁电四极矩竞争序
      PrRh2Zn20 立方($ Fd\bar3 m $) 0.06 反铁电四极矩竞争序
      PrV2Al20 立方($ Fd\bar3 m $) 0.05 900 反铁电四极矩竞争序
      PrTi2Al20 立方($ Fd\bar3 m $) 0.2 100 铁电四极矩竞争序
      Pu基 PuCoGa5 四方($ P4/mmm $) 18.5 77 线 混合价态; 价态涨落机制? 自旋涨落机制?
      PuCoIn5 四方($ P4/mmm $) 2.5 200 线 混合价态; 自旋涨落机制
      PuRhGa5 四方($ P4/mmm $) 8.7 70 线 混合价态; 自旋涨落机制
      PuRhIn5 四方($ P4/mmm $) 1.6 350 线 混合价态; 价态涨落机制? 自旋涨落机制?
      Np基 NpPd5Al2 四方($ I4/mmm $) 4.9 200 非费米液体正常态
      *表格中$ T_{\rm{c}}$后有括号表明为压力下超导, “—”表示尚无相关实验, “?”表示还不确定或存在争议. 表中主要数据及特殊性质可参考文献[65-68].
      DownLoad: CSV

      对称性变换 自旋单态 自旋三重态
      费米子交换$ P $ $ P\psi({{k}})=\psi(-{{k}})=\psi({{k}}) $ $ P{{d}}({{k}})={{d}}(-{{k}})=-{{d}}({{k}}) $
      空间旋转$ g $ $ g\psi({{k}})=\psi(D(g){{k}}) $ $ g{{d}}({{k}})={{d}}(D(g){{k}}) $
      自旋旋转$ g_s $ $ g_s\psi({{k}})=\psi({{k}}) $ $ g_s{{d}}({{k}})=\bar D(g_s){{d}}({{k}}) $1
      时间反演$ \theta $ $ \theta\psi({{k}})=\psi^*(-{{k}}) $ $ \theta{{d}}({{k}})=-{{d}}^*(-{{k}}) $
      空间反演$ I $ $ I\psi({{k}})=\psi(-{{k}}) $ $ I{{d}}({{k}})={{d}}(-{{k}}) $
      $ U(1) $规范$\varPhi$ $\varPhi\psi({{k} })={\rm e}^{{\rm i}\phi}\psi({{k} })$ $\varPhi{{d} }({{k} })={\rm e}^{{\rm i}\phi}{{d} }({{k} })$
      *其中$D(g)$为晶体点群G的表示矩阵, $\bar D(g_s)$为SU(2)群的表示矩阵.
      1存在自旋-轨道耦合时, 自旋的旋转与${{k}}$ 的旋转不再独立, 即$g_s{{d}}({{k}})=\bar D(g_s){{d}}(\bar D(g_s){{k}})$.
      DownLoad: CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

      [150]

      [151]

      [152]

      [153]

      [154]

      [155]

      [156]

      [157]

      [158]

      [159]

      [160]

      [161]

      [162]

      [163]

      [164]

      [165]

      [166]

      [167]

      [168]

      [169]

      [170]

      [171]

      [172]

      [173]

      [174]

      [175]

      [176]

      [177]

      [178]

      [179]

      [180]

      [181]

      [182]

      [183]

      [184]

      [185]

      [186]

      [187]

      [188]

      [189]

      [190]

      [191]

      [192]

      [193]

      [194]

      [195]

      [196]

      [197]

      [198]

      [199]

      [200]

      [201]

      [202]

      [203]

      [204]

      [205]

      [206]

      [207]

      [208]

      [209]

      [210]

      [211]

      [212]

      [213]

      [214]

      [215]

      [216]

      [217]

      [218]

      [219]

      [220]

      [221]

      [222]

      [223]

      [224]

      [225]

      [226]

      [227]

      [228]

      [229]

      [230]

      [231]

      [232]

      [233]

      [234]

      [235]

      [236]

      [237]

      [238]

      [239]

      [240]

      [241]

      [242]

      [243]

      [244]

      [245]

      [246]

      [247]

      [248]

      [249]

      [250]

      [251]

      [252]

      [253]

      [254]

      [255]

      [256]

      [257]

      [258]

      [259]

      [260]

      [261]

      [262]

      [263]

      [264]

      [265]

      [266]

      [267]

      [268]

      [269]

      [270]

      [271]

      [272]

      [273]

      [274]

      [275]

      [276]

      [277]

      [278]

      [279]

      [280]

      [281]

      [282]

      [283]

      [284]

      [285]

      [286]

      [287]

      [288]

      [289]

      [290]

      [291]

      [292]

      [293]

      [294]

      [295]

      [296]

      [297]

      [298]

      [299]

      [300]

      [301]

      [302]

      [303]

      [304]

      [305]

      [306]

      [307]

      [308]

      [309]

      [310]

      [311]

      [312]

      [313]

      [314]

      [315]

      [316]

      [317]

      [318]

      [319]

      [320]

      [321]

      [322]

      [323]

      [324]

      [325]

      [326]

      [327]

      [328]

      [329]

      [330]

      [331]

      [332]

      [333]

      [334]

      [335]

      [336]

      [337]

      [338]

      [339]

      [340]

      [341]

      [342]

      [343]

      [344]

      [345]

      [346]

      [347]

      [348]

      [349]

      [350]

    • [1] Wu Hai-Bin, Liu Ying-Di, Liu Yan-Jun, Li Jin-Hua, Liu Jian-Jun.Chiral Majorana fermions resonance exchange moudulated by quantum dot coupling strength. Acta Physica Sinica, 2024, 73(13): 130502.doi:10.7498/aps.73.20240739
      [2] Luo Yu-Chen, Li Xiao-Peng.Quantum simulation of interacting fermions. Acta Physica Sinica, 2022, 71(22): 226701.doi:10.7498/aps.71.20221756
      [3] Li Jian-Xin.Spin fluctuations and uncoventional superconducting pairing. Acta Physica Sinica, 2021, 70(1): 017408.doi:10.7498/aps.70.20202180
      [4] Xie Wu, Shen Bin, Zhang Yong-Jun, Guo Chun-Yu, Xu Jia-Cheng, Lu Xin, Yuan Hui-Qiu.Heavy fermion materials and physics. Acta Physica Sinica, 2019, 68(17): 177101.doi:10.7498/aps.68.20190801
      [5] Cheng Jin-Guang.Pressure-tuned magnetic quantum critical point and unconventional superconductivity. Acta Physica Sinica, 2017, 66(3): 037401.doi:10.7498/aps.66.037401
      [6] Leng Chun-Ling, Zhang Ying-Qiao, Ji Xin.The -type four-particle entangled state generated by using superconducting artificial atoms with broken symmetry. Acta Physica Sinica, 2015, 64(18): 184207.doi:10.7498/aps.64.184207
      [7] Li Zheng, Zhou Rui, Zheng Guo-Qing.Quantum criticalities in carrier-doped iron-based superconductors. Acta Physica Sinica, 2015, 64(21): 217404.doi:10.7498/aps.64.217404
      [8] Zhou Yang, Guo Jian-Hong.Shot noise characteristics of Majorana fermions in transport through double quantum dots. Acta Physica Sinica, 2015, 64(16): 167302.doi:10.7498/aps.64.167302
      [9] Zhang Jing-Lei, Jiao Lin, Pang Gui-Ming, Yuan Hui-Qiu.Order parameters of non-centrosymmetric superconductors. Acta Physica Sinica, 2015, 64(21): 217403.doi:10.7498/aps.64.217403
      [10] Yang Yi-Feng, Li Yu.Heavy-fermion superconductivity and competing orders. Acta Physica Sinica, 2015, 64(21): 217401.doi:10.7498/aps.64.217401
      [11] Lu Hong-Yan, Chen San, Liu Bao-Tong.Theoretical research on two gaps in cuprate superconductors:an electronic Raman scattering study. Acta Physica Sinica, 2011, 60(3): 037402.doi:10.7498/aps.60.037402
      [12] Wu Jian-Bao.A finite-temperature Landau theory for multilayered cuprate superconductors. Acta Physica Sinica, 2006, 55(4): 2049-2056.doi:10.7498/aps.55.2049
      [13] Cao Tian-De, Xu Li-Na.Pairing symmetry with interband interaction. Acta Physica Sinica, 2005, 54(3): 1406-1409.doi:10.7498/aps.54.1406
      [14] SUN JIU-XUN, ZHANG LI-YUAN.A COMBINATION MODEL OF SUPERCONDUCTIVITY UNDER s+d MIXED WAVE SYMMETRY. Acta Physica Sinica, 1996, 45(11): 1913-1920.doi:10.7498/aps.45.1913
      [15] Feng Shi-ping.THEORETICAL INVESTIGATION OF HEAVY FERMION SUPERCONDUCTIVITY IN ITINERANT FERROMAGNETS. Acta Physica Sinica, 1986, 35(9): 1243-1247.doi:10.7498/aps.35.1243
      [16] Zhang Cheng, Huo Yu-ping.THE CRITICAL BEHAVIOR OF THE FLUCTUATION IN TRIMOLECULAR REACTION MODELX. Acta Physica Sinica, 1983, 32(6): 750-761.doi:10.7498/aps.32.750
      [17] LUO LIAO-FU, LU TAN.THE INNER SYMMETRIES OF HADRONS AND THE SUPERNARROW RESONANCES. Acta Physica Sinica, 1976, 25(2): 168-171.doi:10.7498/aps.25.168
      [18] WANG GUO-VEN.DETERMINATIONS OF THE SYMMETRIES OF SINGLE-ELECTRONIC LEVELS AND PHONONS IN A CRYSTAL. Acta Physica Sinica, 1966, 22(2): 197-204.doi:10.7498/aps.22.197
      [19] .. Acta Physica Sinica, 1965, 21(11): 1915-1918.doi:10.7498/aps.21.1915
      [20] .. Acta Physica Sinica, 1964, 20(10): 1048-1052.doi:10.7498/aps.20.1048
    Metrics
    • Abstract views:16837
    • PDF Downloads:1164
    • Cited By:0
    Publishing process
    • Received Date:27 August 2020
    • Accepted Date:22 September 2020
    • Available Online:24 December 2020
    • Published Online:05 January 2021

      返回文章
      返回
        Baidu
        map