\begin{document}$\alpha _{\text{0}}^{\text{1}}{\beta _0}$\end{document}. For Li atoms, the present electric-dipole polarizability is in good agreement with the available theoretical and experimental results. However, the present hyperpolarizability is different from the other theoretical results significantly. Moreover, the hyperpolarizabilities calculated by different theoretical methods are quite different. The biggest difference is more than one order of magnitude. In order to explain the reason for these differences, we analyze the contributions of different intermediate states to the hyperpolarizability in detail. It is found that the sum of the contributions of the 2s→npj\begin{document}$\left( {n \geqslant 3} \right)$\end{document} and npjndj\begin{document}$\left( {n \geqslant 3} \right)$\end{document} to hyperpolarizability is approximately equal to that term of \begin{document}$\alpha _{\text{0}}^{\text{1}}{\beta _0}$\end{document}. The total hyperpolarizability, which is the difference between the sum of the contributions of the 2snpj\begin{document}$\left( {n \geqslant 3} \right)$\end{document} and npjndj\begin{document}$\left( {n \geqslant 3} \right)$\end{document} to hyperpolarizability and \begin{document}$\alpha _{\text{0}}^{\text{1}}{\beta _0}$\end{document}, is relatively small. Consequently, this difference magnifies the calculated error. If the uncertainties of the transition matrix elements are less than 0.1%, the uncertainty of hyperpolarizability is more than 100%. Therefore, the differences of hyperpolarizabilities for the ground state of Li atoms, calculated by various theoretical methods, are more than 100% or one order of magnitude."> Theoretical study of polarizabilities and hyperpolarizabilities of Be<sup>+</sup> ions and Li atoms - 必威体育下载

Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

    Wang Ting, Jiang Li, Wang Xia, Dong Chen-Zhong, Wu Zhong-Wen, Jiang Jun
    PDF
    HTML
    Get Citation
    • The wave functions, energy levels, and oscillator strengths of Be +ions and Li atoms are calculated by using a relativistic potential model, which is named the relativistic configuration interaction plus core polarization method (RCICP). The calculated energy levels in this work are in good agreement with experimental levels tabulated in NIST Atomic Spectra Database, and the difference appears in the sixth digit after the decimal point. The present oscillator strengths are in good agreement with the existing theoretical and experimental results. By means of these energy levels and oscillator strengths, the electric-dipole static polarizabilities and hyperpolarizabilities of the ground states are determined. The contributions of different intermediate states to the hyperpolarizabilities of the ground state are further discussed. For Be +ions, the present electric-dipole polarizability and hyperpolarizability are in good agreement with the results calculated by Hartree-Fock plus core polarization method, the finite field method and relativistic many-body method. The largest contribution to the hyperpolarizability is the term of $\alpha _{\text{0}}^{\text{1}}{\beta _0}$ . For Li atoms, the present electric-dipole polarizability is in good agreement with the available theoretical and experimental results. However, the present hyperpolarizability is different from the other theoretical results significantly. Moreover, the hyperpolarizabilities calculated by different theoretical methods are quite different. The biggest difference is more than one order of magnitude. In order to explain the reason for these differences, we analyze the contributions of different intermediate states to the hyperpolarizability in detail. It is found that the sum of the contributions of the 2s→ np j $\left( {n \geqslant 3} \right)$ and np jnd j $\left( {n \geqslant 3} \right)$ to hyperpolarizability is approximately equal to that term of $\alpha _{\text{0}}^{\text{1}}{\beta _0}$ . The total hyperpolarizability, which is the difference between the sum of the contributions of the 2 snp j $\left( {n \geqslant 3} \right)$ and np jnd j $\left( {n \geqslant 3} \right)$ to hyperpolarizability and $\alpha _{\text{0}}^{\text{1}}{\beta _0}$ , is relatively small. Consequently, this difference magnifies the calculated error. If the uncertainties of the transition matrix elements are less than 0.1%, the uncertainty of hyperpolarizability is more than 100%. Therefore, the differences of hyperpolarizabilities for the ground state of Li atoms, calculated by various theoretical methods, are more than 100% or one order of magnitude.
          Corresponding author:Jiang Jun,phyjiang@yeah.net
        • Funds:Project supported by the National Key R&D Program of China (Grant No. 2017YFA0402300) and the National Natural Science Foundation of China (Grant Nos. 11774292, 11804280, 11864036)
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

        [54]

      • State j ρl,j
        Be+ Li
        2s 1/2 0.9552 1.40880
        2p 1/2 0.8789 1.28466
        3/2 0.8775 1.28396
        3d 3/2 0.1287 2.324
        5/2 0.1284 2.330
        DownLoad: CSV

        State j Be+ Li
        RCICP Expt.[42] RCICP Expt.[42]
        2s 1/2 –0.66924767 –0.66924755 –0.1981419 –0.1981419
        2p 1/2 –0.52376962 –0.52376949 –0.1302358 –0.1302358
        3/2 –0.52373967 –0.52373953 –0.1302343 –0.1302343
        3s 1/2 –0.26719384 –0.26723337 –0.0741684 –0.0741817
        3p 1/2 –0.22954214 –0.22958234 –0.0572264 –0.0572354
        3/2 –0.22953331 –0.22957356 –0.0572260 –0.0572354
        3d 3/2 –0.22247809 –0.22247805 –0.0556055 –0.0556057
        5/2 –0.22247565 –0.22247565 –0.0556051 –0.0556055
        4s 1/2 –0.14313397 –0.14315285 –0.0386096 –0.0386151
        4p 1/2 –0.12811380 –0.12813485 –0.0319693 –0.0319744
        3/2 –0.12811009 –0.12813115 –0.0319691 –0.0319744
        4d 3/2 –0.12512357 –0.12512455 –0.0308153 –0.0312735
        5/2 –0.12512257 –0.12512345 –0.0308152 –0.0312734
        5s 1/2 –0.08905659 –0.08906605 –0.0236202 –0.0236365
        5p 1/2 –0.08159826 –0.08160960 –0.0203583 –0.0203739
        3/2 –0.08159637 –0.08160765 –0.0203583 –0.0203739
        5d 3/2 –0.08006698 –0.08006725 –0.0124153 –0.0200122
        5/2 –0.08006648 –0.08006670 –0.0124152 –0.0200122
        DownLoad: CSV

        Transitions RCICP NIST[42] Theor.[25] Diff./%
        2s1/2→2p1/2 0.16624 0.16596 0.1661 0.17
        2s1/2→2p3/2 0.33258 0.33198 0.3322 0.18
        2s1/2→3p1/2 0.02760 0.02768 0.0277 0.29
        2s1/2→3p3/2 0.05517 0.05540 0.0553 0.42
        2p1/2→3s1/2 0.06434 0.06438 0.0644 0.06
        2p3/2→3s1/2 0.06436 0.06438 0.0644 0.03
        2p1/2→4s1/2 0.01022 0.01039 0.0102 1.64
        2p3/2→4s1/2 0.01022 0.01039 0.0102 1.64
        2p1/2→3d3/2 0.6320 0.6320 0.6319 0.00
        2p3/2→3d3/2 0.0632 0.0632 0.0632 0.00
        2p3/2→3d5/2 0.5689 0.5689 0.5688 0.00
        3s1/2→3p1/2 0.2768 0.2767 0.2767 0.04
        3s1/2→3p3/2 0.5538 0.5535 0.5535 0.05
        3p1/2→3d3/2 0.08069 0.08113 0.0811 0.54
        3p3/2→3d3/2 0.08059 0.08103 0.081 0.54
        3p3/2→3d5/2 0.07256 0.07294 0.073 0.52
        3p1/2→4s1/2 0.1346 0.1347 0.1346 0.07
        3p3/2→4s1/2 0.1346 0.1347 0.1346 0.07
        DownLoad: CSV

        Transitions RCICP NIST[42] Theor.[29] Diff./%
        2s1/2→2p1/2 0.24915 0.24899 0.2490 0.06
        2s1/2→2p3/2 0.49832 0.49797 0.4981 0.07
        2s1/2→3p1/2 0.00157 0.00157 0.0016 0.00
        2s1/2→3p3/2 0.00313 0.00314 0.0032 0.32
        2p1/2→3s1/2 0.11058 0.11050 0.1106 0.07
        2p3/2→3s1/2 0.11059 0.11050 0.1106 0.08
        2p1/2→4s1/2 0.01285 0.01283 0.0128 0.16
        2p3/2→4s1/2 0.01285 0.01283 0.0128 0.16
        2p1/2→3d3/2 0.63876 0.63858 0.6386 0.03
        2p3/2→3d3/2 0.06388 0.06386 0.0639 0.03
        2p3/2→3d5/2 0.57489 0.57472 0.5747 0.03
        3s1/2→3p1/2 0.40512 0.4051 0.405 0.00
        3s1/2→3p3/2 0.81027 0.8100 0.810 0.03
        3p1/2→3d3/2 0.07397 0.0733 0.0744 0.91
        3p3/2→3d3/2 0.00740 0.00736 0.0074 0.54
        3p3/2→3d5/2 0.06657 0.0663 0.0669 0.41
        3p1/2→4s1/2 0.22325 0.2230 0.2232 0.11
        3p3/2→4s1/2 0.22325 0.2230 0.2232 0.11
        3d3/2→4p1/2 0.01453 0.01497 0.015 2.94
        3d3/2→4p3/2 0.00290 0.00299 0.003 3.01
        3d5/2→4p3/2 0.01743 0.01796 0.018 2.95
        DownLoad: CSV

        Method $\alpha _{\rm{0}}^{\rm{1}}$/a.u. γ0/a.u. Diff./%
        RCICP 24.504(32) –11529.971(84)
        Coulomb approximation[43] 24.77
        Variation-perturbation Hylleraas CI[44] 24.5
        Hylleraas[24] 24.489
        Asymptotic correct wave function[45] 24.91
        Variation-perturbation FCCI[46,47] 24.495
        Hartree-Fock plus core polarization[22] 24.493 –11511 0.16
        Hylleraas[22] 24.4966(1) –11521.30(3) 0.08
        Relativistic many-body calculation[25] 24.483(4) –11496(6) 0.29
        The finite field method[30] 24.5661 –11702.31 1.49
        DownLoad: CSV

        Contr. RCICP RCICPC RMBT[25]
        $\tfrac{1}{18}$T(s, p1/2, s, p1/2) 34.34(2) 34.32 32.605(53)
        $-\tfrac{1}{18}$T(s, p1/2, s, p3/2) 68.68(5) 68.63 68.886(92)
        $-\tfrac{1}{18}$T(s, p3/2, s, p1/2) 68.68(5) 68.63 68.886(92)
        $\tfrac{1}{18}$T(s, p3/2, s, p3/2) 137.35(10) 137.25 137.669(109)
        $T({\rm{s, }}{{\rm{p}}_{j'}}, {\rm{ s}}, {\rm{ }}{{\rm{p}}_{j''}})$ 308.04(12) 308.83 308.046(178)
        $\tfrac{1}{18}$T(s, p1/2, d3/2, p1/2) 202.75(16) 202.59 202.031(121)
        $\tfrac{1}{18\sqrt{10} }$T(s, p1/2, d3/2, p3/2) 40.55(4) 40.51 40.403(18)
        $\tfrac{1}{18\sqrt{10} }$T(s, p3/2, d3/2, p1/2) 40.55(4) 40.51 40.403(18)
        $\tfrac{1}{180}$T(s, p3/2, d3/2, p3/2) 8.11(1) 8.10 8.080(3)
        $\tfrac{1}{30}$T(s, p3/2, d5/2, p3/2) 437.85(40) 437.45 438.434(148)
        $T({\rm{s}}, {{\rm{p}}_{j'}}, {{\rm{d}}_j}, {{\rm{p}}_{j''}})$ 729.79(43) 729.17 729.351(192)
        $\alpha _{\rm{0}}^{\rm{1}}{\beta _0}$ 1999.67(6.95) 1992.72 1995.743(382)
        γ0(2 s) –11529(84) –11456 –11496(6)
        DownLoad: CSV

        Method $\alpha _{\rm{0}}^{\rm{1}}$ γ0
        RCICP 164.05(8) 1920(3264)
        The coupled cluster (all single, double and triple substitution)[1] 164.19 2880
        Finite-field quadratic configuration interaction[1] 164.32 1020
        Hylleraas[31] 164.112(1) 3060(40)
        The relativistic coupled-cluster method[48] 164.23
        Relativistic variation perturbation[49] 164.084
        Relativistic all-order methods[29] 164.16(5)
        Variation perturbation[33] 164.10 3000
        Semiempirical pseudopotentials[26] 164.08 65000
        Frozen core Hamiltonian with a semiempirical polarization potential[50] 164.21
        Finite-field fourth-order many-body perturbation theory[34] 164.5 4300
        Configuration interaction[35] 164.9 37000
        Relativistic ab initio methods[51] 164.0(1)
        The restricted Hartree-Fock[32] 170.1 –55000
        The Rydberg-Klein-Rees inversion method with the quantum defect theory[52] 164.14 3390
        Exp.[53] 164(3)
        Exp.[54] 164.2(11)
        DownLoad: CSV

        Contr. RCICP/a.u. RCICPC/a.u. Diff. /%
        $ \frac{1}{18} $T(s, p1/2, s, p1/2) 8314(2) 8312 0.03
        $ -\frac{1}{18} $T(s, p1/2, s, p3/2) 16629(5) 16624 0.03
        $ -\frac{1}{18} $T(s, p3/2, s, p1/2) 16629(5) 16624 0.03
        $ \frac{1}{18} $T(s, p3/2, s, p3/2) 33259(11) 33248 0.03
        $T({\rm{s}}, {{\rm{p}}_{j'}}, {\rm{s}}, {{\rm{p}}_{j''}})$ 74833(13) 74809 0.02
        $ \frac{1}{18} $T(s, p1/2, d3/2, p1/2) 33812(13) 33799 0.04
        $ \frac{1}{18\sqrt{10}} $T(s, p1/2, d3/2, p3/2) 6762(3) 6759 0.04
        $ \frac{1}{18\sqrt{10}} $T(s, p3/2, d3/2, p1/2) 6762(3) 6759 0.04
        $ \frac{1}{180} $T(s, p3/2, d3/2, p3/2) 1352(0) 1352 0.00
        $ \frac{1}{30} $T(s, p3/2, d5/2, p3/2) 73033(40) 72993 0.05
        $T({\rm{s}}, {{\rm{p}}_{j'}}, {{\rm{d}}_j}, {{\rm{p}}_{j''}})$ 121723(42) 121661 0.03
        $\alpha _{\rm{0}}^{\rm{1}}{\beta _0}$ 196396(268) 196128 0.14
        γ0(2 s) 1920(3264) 4109 170
        DownLoad: CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

        [24]

        [25]

        [26]

        [27]

        [28]

        [29]

        [30]

        [31]

        [32]

        [33]

        [34]

        [35]

        [36]

        [37]

        [38]

        [39]

        [40]

        [41]

        [42]

        [43]

        [44]

        [45]

        [46]

        [47]

        [48]

        [49]

        [50]

        [51]

        [52]

        [53]

        [54]

      • [1] Yang Wei, Ding Shi-Yuan, Sun Bao-Yuan.Relativistic Hartree-Fock model of nuclear single-particle resonances based on real stabilization method. Acta Physica Sinica, 2024, 73(6): 062102.doi:10.7498/aps.73.20231632
        [2] Chen Chi-Ting, Wu Lei, Wang Xia, Wang Ting, Liu Yan-Jun, Jiang Jun, Dong Chen-Zhong.Theoretical study of static dipole polarizabilities and hyperpolarizability of B2+and B+ions. Acta Physica Sinica, 2023, 72(14): 143101.doi:10.7498/aps.72.20221990
        [3] Yu Geng-Hua, Yan Hui, Gao Dang-Li, Zhao Peng-Yi, Liu Hong, Zhu Xiao-Ling, Yang Wei.Calculationof isotope shift of Mg+ ion by using the relativistic multi-configuration interaction method. Acta Physica Sinica, 2018, 67(1): 013101.doi:10.7498/aps.67.20171817
        [4] Yu Xue-Cai, Wang Ping-He, Zhang Li-Xun.Atom movement in momentum dependent light dipole lattices. Acta Physica Sinica, 2013, 62(14): 144202.doi:10.7498/aps.62.144202
        [5] You Yang-Ming, Wang Bing-Zhang, Wang Ji-You.Optical model potential of antiproton atoms with nuclear polarization correction. Acta Physica Sinica, 2012, 61(20): 202401.doi:10.7498/aps.61.202401
        [6] Tian Mi, Zhang Qiu-Ju, Bai Yi-Ling, Cui Chun-Hong.Scattering of electrons in linearly polarized high-intensity laser standing waves. Acta Physica Sinica, 2012, 61(20): 203401.doi:10.7498/aps.61.203401
        [7] Zhu Jing, Lü Chang-Gui, Hong Xu-Sheng, Cui Yi-Ping.Theoretical study on solvent effect of the molecular first hyperpolarizability. Acta Physica Sinica, 2010, 59(4): 2850-2854.doi:10.7498/aps.59.2850
        [8] Wang Li-Guang, Zhang Hong-Yu, Wang Chang, Terence K. S. W..Electronic conductance of zigzag single wall carbon nanotube with an implanted Li atom. Acta Physica Sinica, 2010, 59(1): 536-540.doi:10.7498/aps.59.536
        [9] Wang Lei, Hu Hui-Fang, Wei Jian-Wei, Zeng Hui, Yu Ying-Ying, Wang Zhi-Yong, Zhang Li-Juan.Theoretical study on the first hyperpolarizabilities of stilbene derivatives. Acta Physica Sinica, 2008, 57(5): 2987-2993.doi:10.7498/aps.57.2987
        [10] Lu Zhen-Ping, Han Kui, Li Hai-Peng, Zhang Wen-Tao, Huang Zhi-Min, Shen Xiao-Peng, Zhang Zhao-Hui, Bai Lei.Theoretical study of molecular vibrational hyperpolarizability of 4-N-methylstilbazonium salt derivatives. Acta Physica Sinica, 2007, 56(10): 5843-5848.doi:10.7498/aps.56.5843
        [11] Li Hai-Peng, Han Kui, Lu Zhen-Ping, Shen Xiao-Peng, Huang Zhi-Min, Zhang Wen-Tao, Bai Lei.Theoretical investigation on dispersion effect and two-photon resonance enhancement of molecular first hyperpolarizability. Acta Physica Sinica, 2006, 55(4): 1827-1831.doi:10.7498/aps.55.1827
        [12] Chen Hong, Mei Hua, Shen Peng-Nian, Jiang Huan-Qing.Heavy quarkonium mass spectra in a relativistic quark model. Acta Physica Sinica, 2005, 54(3): 1136-1141.doi:10.7498/aps.54.1136
        [13] Liu Yu-Xiao, Zhao Zhen-Hua, Wang Yong-Qiang, Chen Yu-Hong.Variational calculations and relativistic corrections to the nonrelativistic ground energies of the helium atom and the helium-like ions. Acta Physica Sinica, 2005, 54(6): 2620-2624.doi:10.7498/aps.54.2620
        [14] Tang Chang-Jian, Gong Yu-Bin, Yang Yu-Zhi.Dielectric tensor of 2D relativistic motional plasma. Acta Physica Sinica, 2004, 53(4): 1145-1149.doi:10.7498/aps.53.1145
        [15] Zheng Yang-Dong, Li Jun-Qing, Li Chun-Fei.. Acta Physica Sinica, 2002, 51(6): 1279-1285.doi:10.7498/aps.51.1279
        [16] ZENG GUI-HUA, ZHU HONG-WEN, XU ZHI-ZHAN.RELATIVISTIC EVEN-ORDER HARMONICS GENERATED IN UNDERDENSE PLASMA. Acta Physica Sinica, 2001, 50(10): 1946-1949.doi:10.7498/aps.50.1946
        [17] LI GAO-XIANG, PENG JIN-SHENG.. Acta Physica Sinica, 1995, 44(10): 1670-1678.doi:10.7498/aps.44.1670
        [18] QU YI-ZHI, GONG XIAO-MIN, LI JIA-MING.RELATIVISTIC EFFECT IN INELASTIC COLLISION OF ELECTRON WITH ATOM OR ION. Acta Physica Sinica, 1995, 44(11): 1719-1726.doi:10.7498/aps.44.1719
        [19] HE XING-HONG, LI BAI-WEN, ZHANG CHENG-XIU.POLARIZABILITIES OF HIGH RYDBERG ALKALI ATOMS. Acta Physica Sinica, 1989, 38(10): 1717-1722.doi:10.7498/aps.38.1717
        [20] .. Acta Physica Sinica, 1965, 21(11): 1927-1932.doi:10.7498/aps.21.1927
      Metrics
      • Abstract views:10603
      • PDF Downloads:173
      • Cited By:0
      Publishing process
      • Received Date:24 August 2020
      • Accepted Date:12 October 2020
      • Available Online:03 February 2021
      • Published Online:20 February 2021

        返回文章
        返回
          Baidu
          map