Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

Liu Yi, Qian Zheng-Hong, Zhu Jian-Guo
PDF
HTML
Get Citation
  • It has been found that many magnetic materials possess the properties arising from skyrmions at room temperature. In addition to the common interaction energy, chiral interaction is also needed to form the skyrmion in magnetic material. There are four chiral magnetic interactions, namely: 1) Dzyaloshinskii-Moriya (DM) interaction; 2) long-ranged magnetic dipolar interaction; 3) four-spin exchange interaction; 4) frustrated exchanged interaction. Through the competition between exchange interaction and chiral interaction, magnetic skyrmion can be realized in magnetic material subject to a certain magnetic field and temperature. The skyrmion generated by the DM interaction features small size (5–100 nm), which is easy to adjust. The skyrmion can be driven by magnetic field or ultralow current density. The magnetic materials with skyrmion can exhibit the properties related to the skyrmion Hall effect, the topological Hall effect and the emergent electrodynamics, which are closely related to the skyrmion number. The existence of skyrmion in the magnetic material can be indirectly measured by topological Hall effect. The movement of skyrmion can be driven by spin polarized current in the direction either parallel or perpendicular to the current direction. The movement of the skyrmion driven by spin polarized currents will continue when the current is present, and will disappear when the current disappears. In previous studies, magnetic skyrmions were realized in a variety of materials. However magnetic skyrmions were found only in very limited types of single crystal materials at room temperature or near room temperature. In recent years, scientists have discovered a variety of magnetic skyrmion materials at room temperature, including film materials (such as multilayer materials, artificial skyrmion materials) and crystal materialssuch as β-Mn-type Co 10–x/2Zn 10–x/2Mn x, Fe 3Sn 2. Among all kinds of room temperature magnetic skyrmion materials, the most valuable one is the multilayer film material. The Skyrmion multilayer film has the advantages of small size, adjustable material type, simple preparation, good temperature stability, good device integration,etc. At the same time, skyrmion multilayer film is very easy to optimize by adjusting and constructing a special structure that has the wanted types of materials each with a certain thickness. Artificial skyrmion material obtains artificial skyrmion by constructing a micro-nano structure, therefore the artificial skyrmion with high-temperature stability can be realized by choosing high Curie temperature materials. There are a variety of materials which can realize the skyrmion above room temperature, such as Co 9Zn 9Mn 2(300–390 K) and Fe 3Sn 2(100–400 K). These room temperature materials further widen the temperature application range of skyrmion. The room temperature materials can be prepared or characterized by a variety of techniquesincluding sputtering for fabrication and X-ray magnetic circular dichroism-photoemission electron microscopy (XMCD-PEEM) for characterization. The discovery of the magnetic skyrmion materials at room temperature not only enriches the research content of materials science, but also makes the skyrmion widely applicable in novel electronic devices (such as racetrack memory, microwave detector, oscillators). Because the skyrmion has the advantages of small size, ultra-low driving current density, and topological stability, it is expected to produce racetrack memory based on the skyrmion with low energy consumption, non-volatile and high density. The MTJ microwave detector based on skyrmion can be achieved with no external magnetic field nor bias current but with low power input (< 1.0 μW); the sensitivity of the microwave detector can reach 2000 V·W –1. The frequency of the oscillator based on skyrmion can be tuned by magnetic field or current, and moreover, the oscillato is very easy to integrate with IC. In this paper, first, the basic characteristic of magnetic skyrmion is introduced; and then room temperature magnetic skyrmion is reviewed; finally the advances of the racetrack memory, microwave detectors and oscillators are introduced, highlighting the development trend of room temperature magnetic skyrmion.
        Corresponding author:Qian Zheng-Hong,zqian@hdu.edu.cn; Zhu Jian-Guo,nic0400@scu.edu.cn
      • Funds:Project supported by the National Key Research and Development Program of China (Grant No. 2018YFF01010701) and the Fundamental Research Funds for the Central Universities, China
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

    • 作用机制 磁偶极相
      互作用
      DM作用 阻挫交
      换作用
      四自旋交换
      相互作用
      斯格明子
      尺寸/nm
      100—1000 5—100 ~1 ~1
      典型材料 MnNiGa[16] MnSi[10] Fe3Sn2[26] Fe/Ir(111)[11]
      DownLoad: CSV

      材料 材料
      种类
      斯格明
      子种类
      制备方法 斯格明子
      温度/K
      MnSi[10] 单晶 布洛赫 布里奇
      曼法
      29
      Fe0.5Co0.5Si[35] 单晶 布洛赫 布里奇
      曼法
      25
      FeGe[13] 单晶 布洛赫 布里奇
      曼法
      60—260
      FeGe[33] 单晶 布洛赫 布里奇
      曼法
      250—270
      Fe1–xCoxSi
      (x= 0.5)[39]
      单晶 布洛赫 布里奇
      曼法
      10
      Fe/Ir[11] 金属超
      薄层
      奈尔型 分子束
      外延法
      11
      PdFe/Ir(1 1 1)[38] 金属超
      薄层
      奈尔型 分子束
      外延法
      4.2
      Cu2OSeO3[36] 单晶 布洛赫 布里奇
      曼法
      60
      FeGe1–xSix
      (x~ 0.25)[39]
      单晶 布洛赫 布里奇
      曼法
      95
      DownLoad: CSV

      材料类型 典型材料 制备方法 斯格明子温
      度范围/K
      斯格明子的
      尺寸/nm
      薄膜材料 多层膜材料 Ta/CoFeB/TaOx[17]
      (Ir/Co/Pt)10[18]
      Pt/Co/Ta, Pt/CoFeB/MgO[19]
      直流溅射 室温 1000
      30—90
      100
      反铁磁/铁磁材料薄膜 [Pt/Gd25Fe65.6Co9.4/MgO]n[23] 直流溅射 室温 180
      人工斯格明子材料 Co/Ni/Cu(001)[15]
      Co/[Co/Pd]n, Co/Pd[40]
      直流溅射 室温 1000
      单晶材料 手性对称材料 Co8Zn8Mn4[41]
      Co8Zn9Mn3[25]
      (β-Mn结构)
      布里奇曼法 284—300
      311—320
      > 125
      中心对
      称材料
      铁氧体 Ba(Fe1–xScxMg0.05)12O19[42] 布里奇曼法 室温 200
      金属间化合物 MnNiGa[16] 布里奇曼法 100—340 90
      阻挫型 Fe3Sn2[26] 聚焦离子束技术(FIB) 100—340 300
      DownLoad: CSV

      材料 驱动电流/107A·cm–2 移动速度/m·s–1 霍尔角/(°) 温度 磁场/mT
      Ta/CoFeB/TaOx[17] 0.62 0.75 32 室温 0.52
      (Pt/Co/Ta)15[19] 3.50 50 19.4 室温
      (Pt/CoFeB/MgO)15[19] 5.00 100 4.01 室温
      [Pt/Gd25Fe65.6Co9.4)/MgO]20[23] 3.55 50 20 室温 145.00
      [Pt/CoFeB/MgO]15[29] 4.20 100 30 室温 30.00
      DownLoad: CSV

      方式 材料类型 制备时间 优点
      直流溅射 薄膜材料 3 h 成本低, 适合工业量产
      分子束外延 薄膜材料 > 1 d 薄膜平整度高
      布里奇曼法 单晶材料 1 m 制作大尺寸器件
      DownLoad: CSV

      方式 分辨率
      /nm
      优点 适用场景
      XMCD-
      PEEM
      ~25 平面内高自
      旋分辨率
      外层磁性
      斯格明子
      STXM ~25 可探测磁场及电场
      敏感材料实时监控
      多层膜内部的斯
      格明子结构
      SPLEEM ~10 平面高分辨率高
      的测试敏感度
      原位沉积表面
      的斯格明子
      X射线
      全息术
      ~10 无误差探测实时
      监控(~70 ps)
      纳米尺寸的多层
      膜内部的斯格
      明子结构
      MOKEM 1000 操作简单易行 尺寸大于1 μm
      的斯格明子
      DownLoad: CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

    • [1] Shi Meng, Wang Wei-Wei, Du Hai-Feng.Exploring approximate analytical expression for magnetic skyrmion structure based on symbolic regression method. Acta Physica Sinica, 2024, 73(1): 011201.doi:10.7498/aps.73.20231473
      [2] Chen Jin-Long, Tao Ran, Li Chong, Zhang Jian-Lei, Fu Chen, Luo Jing-Ting.SnS2/In2O3based gas sensors and its high performance of detecting NO2at room temperature. Acta Physica Sinica, 2024, 73(10): 106801.doi:10.7498/aps.73.20231554
      [3] Dong Yi-Meng, Sun Yong-Jiao, Hou Yu-Chen, Wang Bing-Liang, Lu Zhi-Yuan, Zhang Wen-Dong, Hu Jie.Preparation and room-temperature NO2sensitivity of SnO2/ZnS heterojunctions gas sensor. Acta Physica Sinica, 2023, 72(16): 160701.doi:10.7498/aps.72.20230735
      [4] Zhang Jing-Yan, Dou Peng-Wei, Zhao Yun-Chi, Zhang Shi-Lei, Liu Jia-Qiang, Qi Jie, Lü Hao-Chang, Liu Ruo-Yang, Yu Guang-Hua, Jiang Yong, Shen Bao-Gen, Wang Shou-Guo.Multi-field manipulation in Hall balance. Acta Physica Sinica, 2021, 70(4): 048501.doi:10.7498/aps.70.20201799
      [5] Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng.Ultrafast terahertz detectors. Acta Physica Sinica, 2018, 67(9): 090702.doi:10.7498/aps.67.20180226
      [6] Dong Bo-Wen, Zhang Jing-Yan, Peng Li-Cong, He Min, Zhang Ying, Zhao Yun-Chi, Wang Chao, Sun Yang, Cai Jian-Wang, Wang Wen-Hong, Wei Hong-Xiang, Shen Bao-Gen, Jiang Yong, Wang Shou-Guo.Multi-field control on magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 137507.doi:10.7498/aps.67.20180931
      [7] Hu Yang-Fan, Wan Xue-Jin, Wang Biao.Magnetoelastic phenomena and mechanisms of magnetic skyrmion crystal. Acta Physica Sinica, 2018, 67(13): 136201.doi:10.7498/aps.67.20180251
      [8] Liu Yi-Zhou, Zang Jiadong.Overview and outlook of magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 131201.doi:10.7498/aps.67.20180619
      [9] Hou Zhi-Peng, Ding Bei, Li Hang, Xu Gui-Zhou, Wang Wen-Hong, Wu Guang-Heng.Observation of new-type magnetic skymrions with extremerely high temperature stability and fabrication of skyrmion-based race-track memory device. Acta Physica Sinica, 2018, 67(13): 137509.doi:10.7498/aps.67.20180419
      [10] Liang Xue, Zhao Li, Qiu Lei, Li Shuang, Ding Li-Hong, Feng You-Hua, Zhang Xi-Chao, Zhou Yan, Zhao Guo-Ping.Skyrmions-based magnetic racetrack memory. Acta Physica Sinica, 2018, 67(13): 137510.doi:10.7498/aps.67.20180764
      [11] Li Wen-Jing, Guang Yao, Yu Guo-Qiang, Wan Cai-Hua, Feng Jia-Feng, Han Xiu-Feng.Skyrmions in magnetic thin film heterostructures. Acta Physica Sinica, 2018, 67(13): 131204.doi:10.7498/aps.67.20180549
      [12] Chen Hao, Peng Tong-Jiang, Liu Bo, Sun Hong-Juan, Lei De-Hui.Effect of reduction temperature on structure and hydrogen sensitivity of graphene oxides at room temperature. Acta Physica Sinica, 2017, 66(8): 080701.doi:10.7498/aps.66.080701
      [13] Wang Jia-Yu, Dai Yue-Hua, Zhao Yuan-Yang, Xu Jian-Bin, Yang Fei, Dai Guang-Zhen, Yang Jin.Research on charge trapping memory’s over erase. Acta Physica Sinica, 2014, 63(20): 203101.doi:10.7498/aps.63.203101
      [14] Wang Jia-Yu, Zhao Yuan-Yang, Xu Jian-Bin, Dai Yue-Hua.Effect of defect on the programming speed of charge trapping memories. Acta Physica Sinica, 2014, 63(5): 053101.doi:10.7498/aps.63.053101
      [15] Sun Zhi-Bin, Ma Hai-Qiang, Lei Ming, Yang Han-Dong, Wu Ling-An, Zhai Guang-Jie, Feng Ji.A single-photon detector in the near-infrared range. Acta Physica Sinica, 2007, 56(10): 5790-5795.doi:10.7498/aps.56.5790
      [16] Peng Zi-Long, Han Xiu-Feng, Zhao Su-Fen, Wei Hong-Xiang, Du Guan-Xiang, Zhan Wen-Shan.Perpendicular current-driven magnetization switching in free layer of magnetic tunneling junctions and MRAM. Acta Physica Sinica, 2006, 55(2): 860-864.doi:10.7498/aps.55.860
      [17] Sun Jin-Peng, Wang Tai-Hong.Coulomb blockade three-valued single-electron memory. Acta Physica Sinica, 2003, 52(10): 2563-2568.doi:10.7498/aps.52.2563
      [18] XU FENG, LIU LIAO.PARTICLE DETECTOR MODEL FOR INSTANT RESPONSE. Acta Physica Sinica, 1988, 37(8): 1267-1274.doi:10.7498/aps.37.1267
      [19] CHEN JI-SHU.THEORY OF THIN PYROELECTRIC FILM DETECTORS. Acta Physica Sinica, 1974, 23(6): 51-58.doi:10.7498/aps.23.51
      [20] .STAR-DETECTOR FOR π--MESONS А.Ф.Дунайцев,Ю.Д. Прокошкин. Acta Physica Sinica, 1960, 16(8): 471-478.doi:10.7498/aps.16.471
    Metrics
    • Abstract views:13571
    • PDF Downloads:730
    • Cited By:0
    Publishing process
    • Received Date:26 June 2020
    • Accepted Date:25 July 2020
    • Available Online:02 December 2020
    • Published Online:05 December 2020

      返回文章
      返回
        Baidu
        map