Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

Shao Guang-Wei, Guo Shan-Shan, Yu Rui, Chen Nan-Liang, Ye Mei-Dan, Liu Xiang-Yang
PDF
HTML
Get Citation
  • Stretchable supercapacitors have received more and more attention due to their potential applications in wearable electronics and health monitoring. The stretchable supercapacitors have not only the advantages of high power density, long cycle life, safety and low cost of ordinary supercapacitor, but also good flexibility and stretchability to integrate well with wearable system. In this review, according to the structures of supercapacitors, the methods of preparing stretchable electrodes/devices reported in the literature are categorized and analyzed. We particularly highlight the key findings of creating stretchable electrodes/devices, which include elastic polymer substrates, tensile structure design and elastic polymer + tensile structure. In addition, the research progress of multi-functional stretchable supercapacitors and high elastic gel electrolytes are discussed. Finally, the challenges to the future development of the stretchable supercapacitors are analyzed and summarized. We expect to stimulate more research in creating stretchable supercapacitors for wide practical applications.
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

    • 导电处理 活性材料 沉积方法 电容表现 极限拉伸率/% 电容稳定性 文献
      PDMS基底材料的可拉伸超级电容器
      石墨烯 石墨烯 激光诱发 650 μF/cm2
      @35 μA/cm2
      50 1000次拉伸循环后
      保持84%电容
      [35]
      碳纳米管 V2O5/PEDOT 旋涂 135 mF/cm2
      @0.5 mA/cm2
      50 100次拉伸循环后
      保持85%电容
      [36]
      单壁碳纳米管 单壁碳纳米管 化学汽相淀积 17.5 F/g 120 1000次拉伸循环后
      电容没有变化
      [50]
      单壁碳纳米管 单壁碳纳米管/
      氮化硼纳米管
      干压 7.7 F/g
      @19 μF/cm2
      50 50%应变下1000次
      拉伸循环后
      电容增加25%
      [51]
      PU基底材料的可拉伸超级电容器
      聚吡咯 聚吡咯 化学聚合 108.5 F/g@1 A/g 100 100%应变下拉伸1000次后保持90%电容 [37]
      氮-碳纳米管 氮-碳纳米管 化学气相沉积 37.6 mF/cm2
      @0.05 mA/cm2
      500 1000次拉伸后保持96%电容 [21]
      Ecoflex基底材料的可拉伸超级电容器
      碳纳米管 单壁碳纳米管 涂覆 15.2 F/cm3
      @0.021 A/cm3
      60 在0, 20%, 40%应变下, 1000次充放电循环后电容保持97.4%, 95.5%, 94.5% [52]
      PEDOT:PSS基底材料的可拉伸超级电容器
      银掺杂 PEDOT:PSS/碳纳米管 浸渍烘干 64 mF/cm2(85.3 F/g) 480 400%应变下100次拉伸循环后保持90%电容 [53]
      多壁碳纳米管 多米碳纳米管@聚苯胺 电聚合 2.2 F/cm3@1 mA/cm2 50 50%应变下300次拉伸循环后CV曲线没有明显变化 [54]
      DownLoad: CSV

      导电处理 活性材料 沉积方法 电容表现 极限拉伸率/% 电容稳定性 文献
      螺旋结构设计的可拉伸超级电容器
      不锈钢弹簧 碳纳米管/聚苯胺 原位合成 277.8 F/g@1 A/g, 402.8 mF/cm @1 mA/cm 100 在100%应变下电容没有
      明显降低
      [41]
      碳纳米管纱线 聚吡咯/碳纳米管 电沉积 63.6 F/g@1 A/g 150 [42]
      不锈钢线 MnO2/还原氧化石墨烯 电沉积 2.86 mWh/cm3 400 400%应变下拉伸循环3000次后保持95%电容 [64]
      碳纳米管纱线 碳纳米管纱线/MnO2/聚吡咯 电沉积 60.43 mF/cm2, 7.72 F/g, 9.46 F/cm3, 9.86 mF/cm@10 mV/s 20 20%应变下拉伸循环200次后保持88%电容 [65]
      碳纳米管纤维 碳纳米管 纺丝 0.51 mF/cm, 27.07 mF/cm2
      @150 mA/cm3
      300 拉伸循环300次后保持94%电容 [66]
      波浪结构设计的可拉伸超级电容器
      碳纳米管 碳纳米管@MnO2/碳纳米管@聚吡咯 电沉积 2.2 F/cm3
      @2 mA/cm2
      100 拉伸循环500次后保持96%电容 [67]
      泡沫镍 聚苯胺/石墨烯 电聚合 261 F/g 30 30%应变下拉伸循环100次后保持95%电容 [68]
      织物结构设计的可拉伸超级电容器
      银涂层 聚吡咯@MnO2 丝网印刷 0.0337 mWh/cm2, 95.3 mF/cm2@5 mV/s 40 40%应变下保持
      86.2%电容
      [69]
      不锈钢网 聚吡咯 电化学沉积 170 F/g@0.5 A/g 20 20%应变下拉伸循环10000次后保持87%电容 [46]
      碳纳米管 织物 聚吡咯@MnO2 电镀 461 F/g@0.2 A/g 21 21%应变下保持98.5%电容 [70]
      碳纤维 PEDOT:PSS/碳 浸渍涂覆 100 100%应变下拉伸循环6000次后保持70%电容 [71]
      导电过滤网 聚吡咯@MnO2 电沉积 20 [29]
      银镀层 MnO2–碳纳米管/PEDOT:PSS 丝网印刷 17.5 mWh/cm2
      @0.4 mW/cm2
      20 20%应变下拉伸循环100次后保持95.26%电容 [47]
      单壁碳纳米管 单壁碳纳米管 浸渍烘干 140 F/g, 0.48 F/cm2@20 μA/cm2 120 拉伸后比电容没有变化 [72]
      多壁碳纳米管 多壁碳纳米管/MoO3 喷涂 48.3 F/g@0.14 A/g, 33.8 mF/cm2@0.1 mA/cm 50 应变从10%增加到50%,
      拉伸循环5000次后
      保持80%电容
      [73]
      蛇形结构设计的可拉伸超级电容器
      钛/铂 聚吡咯-多壁碳纳米管 喷涂 5.17 mF/cm2
      @100 μA/cm2
      30 30%应变下双轴拉伸循环1000次后充放电行为没有发生明显变化 [74]
      单壁碳纳米管 单壁碳纳米管 喷涂 100 μF@0.5 V/s 30 30%应变下拉伸循环10次后电容没有明显恶化 [75]
      网状结构设计的可拉伸超级电容器
      单壁碳纳米管膜 单壁碳纳米管 喷涂 1.6 F/cm3, 448 nF/cm2@1 V/s 150 150%应变下电容保持不变 [44]
      碳纳米管膜 聚吡咯/黑磷/碳纳米管 电沉积 7.35 F/cm2
      @7.8 mA/cm2
      2000 2000%应变下拉伸循环10000次后保持95%电容 [76]
      碳纳米管 碳纳米管/聚吡咯 电沉积 69 F/g, 3.5 mF/cm, 74.1 mF/cm2, 9.9 F/cm3@2 mV/s 10 5%应变下拉伸循环5000次后有101%动态电容 [77]
      碳纳米管膜 碳纳米管 化学气
      相沉积
      61.4 mF/cm2, 35.7 F/g 16.0 F/cm3@1 mA/cm2 16 16%应变下拉伸循环3000次后保持93.3%电容 [45]
      碳纳米管 MnO2/碳纳米管 水热合成法 227.2 mF/cm2 500 400%应变下拉伸循环10000次后保持98%电容 [78]
      DownLoad: CSV

      基底材料 结构类型 导电处理 活性材料 沉积方法 电容表现 拉伸率/% 电容稳定性 文献
      PDMS 波浪结构 多壁碳纳米管 多壁碳纳米管/聚苯胺 3D打印 44.13 mF/cm2@
      0.2 mA/cm2
      40 在5%-40%不同应变情况下, 电化学性能几乎没有变化 [57]
      PDMS 波浪结构 3D-石墨烯 3D-石墨烯/聚苯胺 原位聚合 77.8 Wh/kg
      @995 W/kg
      100 100%应变下拉伸循环100次后保持91.2%电容 [60]
      PDMS 波浪结构 碳纳米管 聚苯胺/碳纳米管 涂覆 308.4 F/g@8 A/g 100 100%应变下拉伸循环200次后电容保持不变 [82]
      PDMS 波浪结构 单壁碳纳米管/PEDOT 混合纤维 单壁碳纳米管/PEDOT 电沉积 53 F/g, 1.6 mF/cm2@1 A/g 100 X和Y两个方向, 100%应变下拉伸循环5000次后保持96.9% 和 90.1%电容 [83]
      PDMS 波浪结构 碳纳米管膜 MnO2/碳纳米管, Fe2O3/碳纳米管 水热反应 45.8 Wh/kg 100 在多种应变下电化学循环10000次后保持98.9%电容 [62]
      PDMS 波浪结构 不锈钢线 Ni-Co-S/还原氧化石墨烯 电沉积 127.2 mF/cm2
      @0.1 mA/cm
      100 100%应变下拉伸循环1000次后保持91%电容 [84]
      PDMS 波浪结构 单壁碳纳米管/聚苯胺混合膜 单壁碳纳米管/聚苯胺 化学气
      相沉积
      106 F/g@1 A/g 120 拉伸循环200次后保持85%电容 [85]
      PDMS 网状结构 还原氧化
      石墨烯
      还原氧化石墨烯 浸渍烘干 188 mAh/g
      @0.05 A/g
      50 50%应变下拉伸循环100次后保持89%电容 [86]
      PDMS 网状结构 金-聚甲基丙烯酸甲酯PMMA 纳米纤维网 MnO2 电沉积 3.68 mF/cm2
      @0.007 mA/cm2
      60 60%应变下保持92%电容 [59]
      PDMS 网状结构 银/金核壳
      纳米线
      聚吡咯 电化学沉积 580 μF/cm2
      @5.8 μA/cm2
      50 应变从10%增加到50%, CV曲线几乎没有变化 [87]
      PDMS 网状结构 泡沫石墨烯 聚吡咯/
      石墨烯
      化学气相沉积和化学界面聚合 258 mF/cm2
      @1 mA/cm2
      50 30%应变下充放电循环100次后保持88%电容 [80]
      PU 螺旋结构 镀银 碳纳米管 浸渍涂覆 4.17 mWh/cm3 150 重复拉伸变形后电容没有明显下降 [58]
      PU 螺旋结构 碳纳米管 聚吡咯/碳纳米管 电沉积 69 mF/cm2 130 应变从0%增加到40%, 拉伸循环1000次后保持85%电容 [88]
      PU 螺旋结构 纳米碳 N-石墨烯/3D镍钴铝 原位聚合 1.1 mWh/cm2
      @2.59 mW/cm2
      100 50%应变下拉伸循环10000次后保持91%电容 [89]
      PU 螺旋结构 还原氧化石墨烯纤维 聚吡咯/还原氧化石墨烯/多壁碳
      纳米管
      0.94 mWh/cm3 100 100%应变下保持82.4%电容 [90]
      Ecoflex
      橡胶芯
      螺旋结构 碳纳米管 MnO2/PEDOT@碳
      纳米管
      电沉积 2.38 mF/cm, 11.88 mF/cm2 200 在拉伸循环和扭曲循环后电容分别保持92.8%和98.2% [91]
      Ecoflex 波浪结构 泡沫镍 聚苯胺/
      石墨烯
      电沉积 261 F/g@0.38 A/g 30 30%应变下拉伸循环100次后保持95%电容 [68]
      Ecoflex 橡胶 波浪结构 碳纳米管 PEDOT/碳纳米管 气相聚合 82 F/g, 11 mF/cm2
      @10 mV/s
      600 600%双向拉伸应变下保持94%电容 [92]
      PEDOT:PSS 螺旋结构 PEDOT-S:PSS PEDOT-S:PSS 湿法纺丝 93.1 mF/cm2
      @50 μA/cm2
      400 400%应变下保持80%电容 [93]
      弹性橡胶
      纤维
      螺旋结构 金@碳纳米管 聚苯胺/碳纳米管 电沉积 6 F/cm3@70 A/cm3 400 应变从0%增加到400%保持96%电容 [94]
      弹性纤维 螺旋结构 碳纳米管纤维 MnO2@PEDOT:PSS@碳纳米管 涂覆和
      电沉积
      278.6 mF/cm2 100 100%应变下拉伸循环3000次后保持92%电容 [95]
      弹性纤维 螺旋结构 碳纳米管 碳纳米管 包裹 0.515 Wh/kg@
      0.05 A/g
      100 75%应变下拉伸循环100次后保持95%电容 [55]
      橡胶纤维 螺旋结构 碳纳米管片 MnO2/碳纳米管 包裹 4.8 mF/cm, 22.8 mF/cm2 40—800 600%应变下保持92.6%电容 [96]
      聚合物基底 波浪结构 石墨烯机织布 聚苯胺/
      石墨烯
      原位电沉积 17 μF/cm2
      @0.06 V/s
      30 拉伸循环100次后CV 曲线略有下降(应变速率 60%/s) [97]
      橡皮筋 波浪结构 碳纳米管膜 碳纳米管/
      聚苯胺
      电沉积 394 F/g@2 mV/s 100 100%应变下拉伸循环100次后保持98%电容 [79]
      DownLoad: CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

    • [1] Zhang Wen-Bo, Liu Shao-Cheng, Liao Liang, Wei Wen-Yin, Li Le-Tian, Wang Liang, Yan Ning, Qian Jin-Ping, Zang Qing.Development of charge-discharge circuitry based on supercapacitor and its application to limiter probe diagnostics in EAST. Acta Physica Sinica, 2024, 73(6): 065203.doi:10.7498/aps.73.20231697
      [2] Han Shuai, Guo Qiu-Bo, Lu Ya-Xiang, Chen Li-Quan, Hu Yong-Sheng.Recent progress in aqueous akali-metal-ion batteries at low temperatures. Acta Physica Sinica, 2023, 72(7): 070702.doi:10.7498/aps.72.20230024
      [3] Jiang Mei-Yan, Wang Ping, Chen Ai-Sheng, Chen Cheng-Ke, Li Xiao, Lu Shao-Hua, Hu Xiao-Jun.Preparation and electrochemical properties of nano-diamond/vertical graphene composite three-dimensional electrodes. Acta Physica Sinica, 2022, 71(19): 198101.doi:10.7498/aps.71.20220715
      [4] He Wen-Qian, Zhou Xiang, Liu Zun-Feng.Recent progress on stretchable conductors. Acta Physica Sinica, 2020, 69(17): 177401.doi:10.7498/aps.69.20200632
      [5] Qu Li-Jian.Analytical strong-stretching theory of polyelectrolyte brushes loaded with charged nanoparticles. Acta Physica Sinica, 2020, 69(14): 148201.doi:10.7498/aps.69.20200432
      [6] Feng Wu-Liang, Wang Fei, Zhou Xing, Ji Xiao, Han Fu-Dong, Wang Chun-Sheng.Stability of interphase between solid state electrolyte and electrode. Acta Physica Sinica, 2020, 69(22): 228206.doi:10.7498/aps.69.20201554
      [7] Ren Yuan, Zou Zhe-Yi, Zhao Qian, Wang Da, Yu Jia, Shi Si-Qi.Brief overview of microscopic physical image of ion transport in electrolytes. Acta Physica Sinica, 2020, 69(22): 226601.doi:10.7498/aps.69.20201519
      [8] Ye An-Na, Zhang Xiao-Hua, Yang Zhao-Hui.Redox-enhanced solid-state supercapacitor based on hydroquinone-containing gel electrolyte/ carbon nanotube arrays. Acta Physica Sinica, 2020, 69(12): 126101.doi:10.7498/aps.69.20200204
      [9] Zhang Xin, Chen Xing, Bai Tian, You Xing-Yan, Zhao Xin, Liu Xiang-Yang, Ye Mei-Dan.Recent advances in flexible fiber-shaped supercapacitors. Acta Physica Sinica, 2020, 69(17): 178201.doi:10.7498/aps.69.20200159
      [10] Wu Meng-Dan, Zhou Sheng-Lin, Ye An-Na, Wang Min, Zhang Xiao-Hua, Yang Zhao-Hui.High-voltage flexible solid state supercapacitor based on neutral hydrogel/carbon nanotube arrays. Acta Physica Sinica, 2019, 68(10): 108201.doi:10.7498/aps.68.20182288
      [11] Zhu Qi, Yuan Xie-Tao, Zhu Yi-Hao, Zhang Xiao-Hua, Yang Zhao-Hui.Flexible solid-state supercapacitors based on shrunk high-density aligned carbon nanotube arrays. Acta Physica Sinica, 2018, 67(2): 028201.doi:10.7498/aps.67.20171855
      [12] Yang Xiu-Tao, Liang Zhong-Guan, Yuan Yu-Jia, Yang Jun-Liang, Xia Hui.Preparation and electrochemical performance of porous carbon nanosphere. Acta Physica Sinica, 2017, 66(4): 048101.doi:10.7498/aps.66.048101
      [13] Zhang Cheng, Deng Ming-Sen, Cai Shao-Hong.Co3O4 mesoporous nanostructure supported by Ni foam as high-performance supercapacitor electrodes. Acta Physica Sinica, 2017, 66(12): 128201.doi:10.7498/aps.66.128201
      [14] Guo Li-Qiang, Wen Juan, Cheng Guang-Gui, Yuan Ning-Yi, Ding Jian-Ning.Dual in-plane-gate coupled IZO thin film transistor based on capacitive coupling effect in KH550-GO solid electrolyte. Acta Physica Sinica, 2016, 65(17): 178501.doi:10.7498/aps.65.178501
      [15] Wang Jun-Xia, Bi Zhuo-Neng, Liang Zhu-Rong, Xu Xue-Qing.Progress of new carbon material research in perovskite solar cells. Acta Physica Sinica, 2016, 65(5): 058801.doi:10.7498/aps.65.058801
      [16] Zhong Cheng, Chen Zhi-Quan, Yang Wei-Guo, Xia Hui.Influence of electrolytes on diffusion properties of colloidal particles in dense suspensions. Acta Physica Sinica, 2013, 62(21): 214207.doi:10.7498/aps.62.214207
      [17] Yu Huang-Zhong, Wen Yuan-Xin.Influence of the thickness and cathode material on the performance of the polymer solar cell. Acta Physica Sinica, 2011, 60(3): 038401.doi:10.7498/aps.60.038401
      [18] Xu Jun, Huang Yu-Jian, Ding Shi-Jin, Zhang Wei.Influence of Ta and TaN bottom electrodes on electrical performances of MIM capacitors with atomic-layer-deposited HfO2 dielectric. Acta Physica Sinica, 2009, 58(5): 3433-3436.doi:10.7498/aps.58.3433
      [19] .The distribution of dust particles in the plasma sheath. Acta Physica Sinica, 2007, 56(12): 7090-7099.doi:10.7498/aps.56.7090
      [20] YU WEN-HAI, DING YI.FRACTAL MODEL OF THE INTERFACE BETWEEN ELECTROLYTE AND ELECTRODE AND ITS FREQUENCY RESPONSE. Acta Physica Sinica, 1989, 38(10): 1621-1627.doi:10.7498/aps.38.1621
    Metrics
    • Abstract views:16811
    • PDF Downloads:521
    • Cited By:0
    Publishing process
    • Received Date:10 June 2020
    • Accepted Date:10 July 2020
    • Available Online:02 September 2020
    • Published Online:05 September 2020

      返回文章
      返回
        Baidu
        map