Search

Article

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
Citation:

Cui Xing-Hua, Xu Qiao-Jing, Shi Biao, Hou Fu-Hua, Zhao Ying, Zhang Xiao-Dan
PDF
HTML
Get Citation
  • Organic-inorganic metal halide perovskites are a new type of photovoltaic material, they have attracted wide attention and made excellent progress in recent years. The power conversion efficiency of a single-junction perovskite solar cell has been increased to 25.2% just within a decade. Meanwhile, crystalline silicon solar cells account for nearly 90% of industrialized solar cells and have a maximum efficiency of 26.7%, approaching to their theoretical limit. It is more difficult to further improve the efficiency of single junction solar cells. It has been shown that multi-junction tandem solar cells prepared by stacking absorption layers with different bandgaps can better use sunlight, which is one of the most promising strategies to break the efficiency limitation of single-junction solar cells. Due to the bandgap tunability and low-temperature solution processability, perovskites stand out among many other materials for manufacturing multi-junction tandem solar cells. Wide bandgap perovskites with a bandgap of 1.63 eV or above have been combined with narrow band gap inorganic absorption layers such as silicon, copper indium gallium selenide, cadmium telluride or narrow bandgap perovskite to produce high efficiency tandem solar cells. In addition to the promoting of the efficiency improvement of solar cells, the wide bandgap perovskites have broad applications in photovoltaic building integration and photocatalytic fields. Therefore, it is very important to explore and develop high quality wide bandgap perovskite materials and solar cells. Unfortunately, the wide bandgap perovskites have several intrinsic weaknesses, including being more vulnerable to the migration of halogen ions under being illuminated, more defects, and greater possibility of energy level mismatching with the charge transport layers than the narrow bandgap counterparts, which limits the further development of the wide bandgap perovskite solar cells. In this review, the development status of wide bandgap perovskite solar cells is summarized and corresponding strategies for improving their performance are put forward. Furthermore, some personal views on the future development of wide bandgap perovskite solar cells are also presented here in this paper.
        Corresponding author:Zhang Xiao-Dan,xdzhang@nankai.edu.cn
      • Funds:Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB1500103), the National Natural Science Foundation of China (Grant No. 61674084), the Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China (Grant No. B16027), the Science and Technology Project of Tianjin, China (Grant No. 18ZXJMTG00220), and the Fundamental Research Fund for the Central Universities, China (Grant No. 63201171)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

    • Type Perovskite Eg/eV VOC/V qVOC/Eg JSC/mA·cm–2 FF/% PCE/% Ref.
      p-i-n MAPbI2.5Br0.5 1.72 1.060 0.61 18.30 78.2 16.60 [35]
      p-i-n (FA0.83MA0.17)0.95Cs0.05Pb(I0.6Br0.4)3 1.71 1.210 0.71 19.70 77.5 18.50 [36]
      p-i-n FA0.6Cs0.4Pb(I0.7Br0.3)3 1.75 1.170 0.67 17.50 80.0 16.30 [37]
      p-i-n FA0.83MA0.17Pb(I0.6Br0.4)3 1.72 1.150 0.67 19.40 77.0 17.20 [38]
      p-i-n FA0.8Cs0.2Pb(I0.7Br0.3)3 1.75 1.240 0.71 17.92 81.9 18.19 [39]
      p-i-n (FA0.65MA0.20Cs0.15)Pb(I0.8Br0.2)3 1.68 1.170 0.70 21.20 79.8 19.50 [27]
      p-i-n Cs0.15(FA0.83MA0.17)0.85Pb(I0.8Br0.2)3 1.64 1.190 0.73 19.50 80.2 18.60 [40]
      p-i-n CsPbI3 1.73 1.160 0.67 17.70 78.6 16.10 [41]
      p-i-n CsPbI2Br 1.80 1.230 0.67 15.26 78.0 15.19 [42]
      p-i-n FA0.6Cs0.3DMA0.1PbI2.4Br0.6 1.70 1.200 0.70 19.60 82.0 19.40 [43]
      p-i-n FA0.75Cs0.25Pb(I0.8Br0.2)3 1.68 1.217 0.72 20.18 83.6 20.42 [44]
      p-i-n (FA0.65MA0.2Cs0.15)Pb(I0.8Br0.2)3 1.67 1.200 0.72 NA NA 20.70 [45]
      p-i-n (FA0.64MA0.20Cs0.15)Pb0.99(I0.79Br0.2)3 1.68 1.196 0.71 21.65 81.5 21.00 [46]
      n-i-p Rb0.05(FA0.75MA0.15Cs0.1)0.95PbI2Br 1.73 1.120 0.71 19.40 73.0 15.90 [47]
      n-i-p FA0.83Cs0.17Pb(I0.6Br0.4)3 1.75 1.160 0.66 18.27 78.5 16.28 [48]
      n-i-p FA0.85Cs0.15Pb(I0.73Br0.27)3 1.72 1.240 0.72 19.83 73.7 18.13 [49]
      n-i-p FA0.8Cs0.2Pb(I0.7Br0.3)3 1.75 1.250 0.71 18.53 79.0 18.27 [50]
      n-i-p MAPb(Br0.2I0.8)3 1.72 1.120 0.65 17.30 82.3 15.90 [51]
      n-i-p K0.1(Cs0.06FA0.79MA0.15)0.9Pb(I0.4Br0.6)3 1.78 1.230 0.69 17.90 79.0 17.50 [52]
      n-i-p FA0.83Cs0.17Pb(I0.6Br0.4)3 1.75 1.230 0.70 18.34 79.0 17.80 [53]
      n-i-p Cs0.17FA0.83PbI2.2Br0.8 1.72 1.270 0.74 19.30 77.4 18.60 [54]
      n-i-p Cs0.12MA0.05FA0.83Pb(I0.6Br0.4)3 1.74 1.250 0.72 19.00 81.5 19.10 [55]
      n-i-p Rb5(Cs5MAFA)95Pb(I0.83Br0.17)3 1.63 1.240 0.76 22.80 81.0 21.60 [56]
      n-i-p FA0.83Cs0.17Pb(I0.6Br0.4)3 1.74 1.200 0.70 19.40 75.1 17.00 [57]
      n-i-p FA0.17Cs0.83PbI2.2Br0.8 1.72 1.244 0.72 19.80 75.0 18.60 [51]
      n-i-p Cs0.2FA0.8Pb(I0.75Br0.25)3 1.65 1.220 0.74 21.20 80.5 20.70 [55]
      n-i-p BA0.09(FA0.83 Cs0.17)0.91Pb(I0.6Br0.4)3 1.72 1.180 0.69 19.80 73.0 17.30 [38]
      n-i-p FA0.15Cs0.85Pb(I0.73Br0.27)3 1.72 1.240 0.72 19.83 73.7 18.10 [58]
      n-i-p FA0.83Cs0.17Pb(I0.6Br0.4)3 1.72 1.310 0.76 19.30 78.0 19.50 [59]
      n-i-p Rb0.05Cs0.095MA0.1425FA0.7125PbI2Br 1.72 1.205 0.70 18.00 78.9 17.10 [54]
      n-i-p CsPbI3 1.73 1.080 0.62 18.41 79.32 15.71 [60]
      n-i-p CsPbI2Br 1.80 1.230 0.68 16.79 77.81 16.07 [61]
      n-i-p β-CsPbI3 1.68 1.110 0.66 20.23 82.0 18.40 [62]
      n-i-p CsPbI3-xBrx 1.77 1.234 0.69 18.30 82.5 18.64 [63]
      n-i-p CsPbI2Br 1.80 1.270 0.71 15.40 79.0 15.50 [64]
      注: NA表示文献中没有给出具体数值; FF表示填充因子.
      DownLoad: CSV

      序号 钙钛矿中常用离子 有效半径R/pm
      1 胍离子(GA+) 278
      2 二甲胺离子(DMA+) 272
      3 甲脒离子(FA+) 253
      4 甲胺离子(MA+) 217
      5 铯离子(Cs+) 167
      6 铷离子(Rb+) 152
      7 钾离子(K+) 138
      8 钠离子(Na+) 102
      9 铅离子(Pb2+) 119
      10 锡离子(Sn2+) 112
      11 碘离子(I) 220
      12 溴离子(Br) 196
      13 氯离子(Cl) 181
      DownLoad: CSV

      Type Perovskite Eg/eV VOC/V Jsc/mA·cm–2 FF/% PCE/% Year Area/cm2 Ref.
      N-I-P MAPbI3 1.61 1.580 11.50 75.00 13.70 2015 1.00 [15]
      FA0.83MA0.17Pb(I0.84Br0.16)3 1.63 1.785 14.00 79.50 19.90 2016 0.16 [133]
      MAPbI3 1.60 1.692 15.80 79.90 21.40 2016 0.17 [134]
      MAPbI3 1.60 1.701 16.10 70.10 19.20 2016 1.22 [134]
      Cs0.19MA0.81PbI3 1.59 1.751 18.80 77.10 22.70 2018 0.25 [135]
      Cs0.19MA0.81PbI3 1.59 1.779 16.50 74.10 21.70 2018 1.43 [135]
      Cs0.19FA0.81Pb(I0.78Br0.22)3 1.63 1.769 16.50 65.40 19.10 2018 12.96 [135]
      MA0.37FA0.48Cs0.15PbI2.01Br0.99 1.69 1.703 15.26 79.20 20.57 2017 0.03 [136]
      FA0.5MA0.38Cs0.12PbI2.04Br0.96 1.69 1.655 16.50 81.10 22.22 2018 0.06 [137]
      FA0.75MA0.25Pb(I0.76B0.24)3 1.65 1.710 15.49 71.00 18.81 2018 0.13 [138]
      Cs0.08FA0.74MA0.18Pb(I0.88Br0.12)3 1.65 1.780 17.82 75.00 23.73 2018 0.13 [139]
      Cs0.1(FA0.75MA0.25)0.9Pb(I0.78Br0.22)3 1.67 1.830 16.74 70.00 21.31 2019 0.13 [133]
      Cs0.08FA0.69MA0.23Pb(I0.78Br22)3 1.67 1.750 16.89 74.18 21.93 2019 0.13 [140]
      CsRbFAMAPbI3-xBrx 1.62 1.763 17.80 78.10 24.50 2018 1.00 [132]
      P-I-N Cs0.17FA0.83Pb(Br0.17I0.83)3 1.63 1.650 18.10 79.00 23.60 2017 1.00 [141]
      FA0.75Cs0.25Pb(I0.8Br0.2)3 1.68 1.770 18.40 77.00 25.00 2018 1.00 [142]
      Cs0.05(MA0.17FA0.83)Pb1.1(I0.83Br0.17)3 1.60 1.760 18.50 78.50 25.50 2018 0.81 [143]
      CsxFA1-xPb(I, Br)3 1.60 1.788 19.50 73.10 25.20 2018 1.42 [144]
      CsxFA1-xPb(I, Br)3 1.60 1.741 19.50 74.70 25.40 2018 1.42 [145]
      Cs0.15(FA0.83MA0.17)0.85Pb(I0.8Br0.2)3 1.64 1.800 17.80 79.40 25.40 2018 0.49 [40]
      Cs0.05(FA0.83MA0.17)0.95Pb(I0.82Br0.18)3 1.63 1.792 19.02 74.60 25.43 2019 1.00 [146]
      Cs0.1MA0.9Pb(I0.9Br0.1)3 1.60 1.820 19.20 75.30 26.20 2020 NA [147]
      Cs0.25FA0.75Pb(I0.85Br0.15Cl0.05)3 1.67 1.890 19.10 75.30 27.04 2020 1.00 [44]
      Cs0.05MA0.15FA0.8Pb(I0.75Br0.25)3 1.68 1.700 19.80 77.00 25.70 2020 0.83 [46]
      (FA0.65MA0.2Cs0.15)Pb(I0.8Br0.2)3 1.68 1.818 18.90 76.40 26.20 2020 1.00 [45]
      注: NA表示文献中没有给出具体数值.
      DownLoad: CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

      [85]

      [86]

      [87]

      [88]

      [89]

      [90]

      [91]

      [92]

      [93]

      [94]

      [95]

      [96]

      [97]

      [98]

      [99]

      [100]

      [101]

      [102]

      [103]

      [104]

      [105]

      [106]

      [107]

      [108]

      [109]

      [110]

      [111]

      [112]

      [113]

      [114]

      [115]

      [116]

      [117]

      [118]

      [119]

      [120]

      [121]

      [122]

      [123]

      [124]

      [125]

      [126]

      [127]

      [128]

      [129]

      [130]

      [131]

      [132]

      [133]

      [134]

      [135]

      [136]

      [137]

      [138]

      [139]

      [140]

      [141]

      [142]

      [143]

      [144]

      [145]

      [146]

      [147]

      [148]

      [149]

    • [1] Wang Jing, Gao Shan, Duan Xiang-Mei, Yin Wan-Jian.Influence of defect in perovskite solar cell materials on device performance and stability. Acta Physica Sinica, 2024, 73(6): 063101.doi:10.7498/aps.73.20231631
      [2] Yang Jing, Han Xiao-Jing, Liu Dong-Xue, Shi Biao, Wang Peng-Yang, Xu Sheng-Zhi, Zhao Ying, Zhang Xiao-Dan.Preparation of wide-bandgap perovskite thin films by propylamine hydrochloride assisted gas quenching method. Acta Physica Sinica, 2024, 73(15): 158401.doi:10.7498/aps.73.20240561
      [3] Wang Yue, Shao Bo-Huai, Chen Shuang-Long, Wang Chun-Jie, Gao Chun-Xiao.Effects of defects on electrical transport properties of anatase TiO2polycrystalline under high pressure: AC impedance measurement. Acta Physica Sinica, 2023, 72(12): 126401.doi:10.7498/aps.72.20230020
      [4] Zhang Mei-Rong, Zhu Zeng-Wei, Yang Xiao-Qin, Yu Tong-Xu, Yu Xiao-Qi, Lu Di, Li Shun-Feng, Zhou Da-Yong, Yang Hui.Research progress of perovskite/crystalline silicon tandem solar cells with efficiency of over 30%. Acta Physica Sinica, 2023, 72(5): 058801.doi:10.7498/aps.72.20222019
      [5] Cao Zhen, Hao Da-Peng, Tang Gang, Xun Zhi-Peng, Xia Hui.Influence of cluster shaped defects on fracture process of fiber bundle. Acta Physica Sinica, 2021, 70(20): 204602.doi:10.7498/aps.70.20210310
      [6] Yin Yuan, Li Ling, Yin Wan-Jian.Theoretical and computational study on defects of solar cell materials. Acta Physica Sinica, 2020, 69(17): 177101.doi:10.7498/aps.69.20200656
      [7] Wu Bu-Jun, Lin Dong-Xu, Li Zheng, Cheng Zhen-Ping, Li Xin, Chen Ke, Shi Ting-Ting, Xie Wei-Guang, Liu Peng-Yi.Optimization of grain size to achieve high-performance perovskite solar cells in vapor deposition. Acta Physica Sinica, 2019, 68(7): 078801.doi:10.7498/aps.68.20182221
      [8] Liu Hao-Hua, Wang Shao-Hua, Li Bo-Bo, Li Hua-Lin.Defect induced asymmetric soliton transmission in the nonlinear circuit. Acta Physica Sinica, 2017, 66(10): 100502.doi:10.7498/aps.66.100502
      [9] Zhang Xiu-Zhi, Wang Kai-Yue, Li Zhi-Hong, Zhu Yu-Mei, Tian Yu-Ming, Chai Yue-Sheng.Effect of nitrogen on the defect luminescence in diamond. Acta Physica Sinica, 2015, 64(24): 247802.doi:10.7498/aps.64.247802
      [10] Zhang Ming-Lan, Yang Rui-Xia, Li Zhuo-Xin, Cao Xing-Zhong, Wang Bao-Yi, Wang Xiao-Hui.Study on proton irradiation induced defects in GaN thick film. Acta Physica Sinica, 2013, 62(11): 117103.doi:10.7498/aps.62.117103
      [11] Wang Xin-Hua, Pang Lei, Chen Xiao-Juan, Yuan Ting-Ting, Luo Wei-Jun, Zheng Ying-Kui, Wei Ke, Liu Xin-Yu.Investigation on trap by the gate fringecapacitance in GaN HEMT. Acta Physica Sinica, 2011, 60(9): 097101.doi:10.7498/aps.60.097101
      [12] Ning Li-Zhong, Qi Xin, Yu Li, Zhou Yang.Defect structures of Rayleigh-Benard travelling wave convection in binary fluid mixtures. Acta Physica Sinica, 2009, 58(4): 2528-2534.doi:10.7498/aps.58.2528
      [13] Zhang Hao, Zhao Jian-Lin, Zhang Xiao-Juan.Numerical analysis of two-dimensional magnetophotonic crystals with structural defects. Acta Physica Sinica, 2009, 58(5): 3532-3537.doi:10.7498/aps.58.3532
      [14] Zhang Kai-Wang, Zhong Jian-Xin.Influence of defects on the melting and premelting of carbon nanotubes. Acta Physica Sinica, 2008, 57(6): 3679-3683.doi:10.7498/aps.57.3679
      [15] Xia Zhi-Lin, Shao Jian-Da, Fan Zheng-Xiu.Effect of bulk inclusion in films on damage probability. Acta Physica Sinica, 2007, 56(1): 400-406.doi:10.7498/aps.56.400
      [16] Chen Zhi-Quan, Kawasuso Atsuo.Vacancy-type defects induced by He-implantation in ZnO studied by a slow positron beam. Acta Physica Sinica, 2006, 55(8): 4353-4357.doi:10.7498/aps.55.4353
      [17] Sun Xian-Kai, Lin Bi-Xia, Zhu Jun-Jie, Zhang Yang, Fu Zhu-Xi.Studies on the strain and its effect on defects in heteroepitaxial ZnO films prepared by LP-OCVD method. Acta Physica Sinica, 2005, 54(6): 2899-2903.doi:10.7498/aps.54.2899
      [18] Chen Ming-Bo, Cui Rong-Qiang, Wang Liang-Xing, Zhang Zhong-Wei, Lu Jian-Feng, Chi Wei-Ying.p-n GaInP2/GaAs tandem solar cells*. Acta Physica Sinica, 2004, 53(11): 3632-3636.doi:10.7498/aps.53.3632
      [19] Li Peng-Fei, Yan Xiao-Hong, Wang Ru-Zhi.. Acta Physica Sinica, 2002, 51(9): 2139-2143.doi:10.7498/aps.51.2139
      [20] TANG XUE-FENG, GU MU, TONG HONG-YONG, LIANG LING, YAO MING-ZHEN, CHEN LING-YAN, LIAO JING-YING, SHEN BIN-FU, QU XIANG-DONG, YIN ZHI-WEN, XU WEI-XIN, WANG JING-C HENG.A STUDY ON La-DOPED PbWO4 SCINTILLATING CRYSTAL. Acta Physica Sinica, 2000, 49(10): 2007-2010.doi:10.7498/aps.49.2007
    Metrics
    • Abstract views:25102
    • PDF Downloads:1102
    • Cited By:0
    Publishing process
    • Received Date:31 May 2020
    • Accepted Date:26 June 2020
    • Available Online:15 October 2020
    • Published Online:20 October 2020

      返回文章
      返回
        Baidu
        map