[1] |
Chu Chun-Guang, Wang An-Qi, Liao Zhi-Min.Josephson effect in topological semimetal-superconductor heterojunctions. Acta Physica Sinica, 2023, 72(8): 087401.doi:10.7498/aps.72.20230397 |
[2] |
Yang Shuai, Zhang Hao, He Ke.Selective-area-epitaxied PbTe-superconductor hybrid nanowires: A new candidate system to realize topological quantum computing. Acta Physica Sinica, 2023, 72(23): 238101.doi:10.7498/aps.72.20231603 |
[3] |
Xu Lei, Li Pei-Ling, Lü Zhao-Zheng, Shen Jie, Qu Fan-Ming, Liu Guang-Tong, Lü Li.Detecting Majorana zero modes with transport measurements. Acta Physica Sinica, 2023, 72(17): 177401.doi:10.7498/aps.72.20230951 |
[4] |
Wang Chen-Xu, He Ran, Li Rui-Rui, Chen Yan, Fang Ding, Cui Jin-Ming, Huang Yun-Feng, Li Chuan-Feng, Guo Guang-Can.Advances in the study of ion trap structures in quantum computation and simulation. Acta Physica Sinica, 2022, 71(13): 133701.doi:10.7498/aps.71.20220224 |
[5] |
Zhou Zong-Quan.“Quantum memory” quantum computers and noiseless phton echoes. Acta Physica Sinica, 2022, 71(7): 070305.doi:10.7498/aps.71.20212245 |
[6] |
Wang Ning, Wang Bao-Chuan, Guo Guo-Ping.New progress of silicon-based semiconductor quantum computation. Acta Physica Sinica, 2022, 71(23): 230301.doi:10.7498/aps.71.20221900 |
[7] |
Su Fei-Fan, Yang Zhao-Hua, Zhao Shou-Kuan, Yan Hai-Sheng, Tian Ye, Zhao Shi-Ping.Fabrication of superconducting qubits and auxiliary devices with niobium base layer. Acta Physica Sinica, 2022, 71(5): 050303.doi:10.7498/aps.71.20211865 |
[8] |
Jiang Da, Yu Dong-Yang, Zheng Zhan, Cao Xiao-Chao, Lin Qiang, Liu Wu-Ming.Research progress of material, physics, and device of topological superconductors for quantum computing. Acta Physica Sinica, 2022, 71(16): 160302.doi:10.7498/aps.71.20220596 |
[9] |
Zhang Jie-Yin, Gao Fei, Zhang Jian-Jun.Research progress of silicon and germanium quantum computing materials. Acta Physica Sinica, 2021, 70(21): 217802.doi:10.7498/aps.70.20211492 |
[10] |
Zhang Shi-Hao, Zhang Xiang-Dong, Li Lü-Zhou.Research progress of measurement-based quantum computation. Acta Physica Sinica, 2021, 70(21): 210301.doi:10.7498/aps.70.20210923 |
[11] |
Wen Lian-Jun, Pan Dong, Zhao Jian-Hua.From high-quality semiconductor/superconductor nanowires to Majorana zero mode. Acta Physica Sinica, 2021, 70(5): 058101.doi:10.7498/aps.70.20201750 |
[12] |
Gu Kai-Yuan, Luo Tian-Chuang, Ge Jun, Wang Jian.Superconductivity in topological materials. Acta Physica Sinica, 2020, 69(2): 020301.doi:10.7498/aps.69.20191627 |
[13] |
Wang Jing.Chiral Majorana fermion. Acta Physica Sinica, 2020, 69(11): 117302.doi:10.7498/aps.69.20200534 |
[14] |
Kong Ling-Yuan, Ding Hong.Emergent vortex Majorana zero mode in iron-based superconductors. Acta Physica Sinica, 2020, 69(11): 110301.doi:10.7498/aps.69.20200717 |
[15] |
Liang Qi-Feng, Wang Zhi, Kawakami Takuto, Hu Xiao.Exploration of Majorana bound states in topological superconductors. Acta Physica Sinica, 2020, 69(11): 117102.doi:10.7498/aps.69.20190959 |
[16] |
Fan Heng.Quantum computation and quantum simulation. Acta Physica Sinica, 2018, 67(12): 120301.doi:10.7498/aps.67.20180710 |
[17] |
Zhao Shi-Ping, Liu Yu-Xi, Zheng Dong-Ning.Novel superconducting qubits and quantum physics. Acta Physica Sinica, 2018, 67(22): 228501.doi:10.7498/aps.67.20180845 |
[18] |
Zhao Na, Liu Jian-She, Li Tie-Fu, Chen Wei.Progress of coupled superconducting qubits. Acta Physica Sinica, 2013, 62(1): 010301.doi:10.7498/aps.62.010301 |
[19] |
Ye Bin, Xu Wen-Bo, Gu Bin-Jie.Robust quantum computation of the quantum kicked Harper model and dissipative decoherence. Acta Physica Sinica, 2008, 57(2): 689-695.doi:10.7498/aps.57.689 |
[20] |
Ye Bin, Gu Rui-Jun, Xu Wen-Bo.Robust quantum computation of the kicked Harper model and quantum chaos. Acta Physica Sinica, 2007, 56(7): 3709-3718.doi:10.7498/aps.56.3709 |